Основные виды каротажа скважин

 

Существует свыше 15 видов каротажа скважин. Ниже дается краткая их характеристика по книге С.С.Итенберга "Интерпретация результатов каротажа скважин". М.: Недра, 1978. - 390 с.

 

Электрический каротаж скважин. Исследование разреза электриче-ским каротажом является стандартным видом работ и выполняется во всех скважинах. При этом замериваются электрическое сопротивление - КС и естественные электрические потенциалы - ПС. По методу сопротивления измеряются кажущиеся удельные сопротивления (КС) горных пород в не-обсаженных скважинах. На показания каротажа непосредственное влияние оказывают: 1) проникновение фильтрата бурового раствора в проницаемый пласт и замещение в зоне проникновения естественного флюида фильтра-том; 2) образование глинистой корки на стенках скважин против проница-емых пластов; 3) изменение диаметра скважины вследствие образования каверн, сужения ствола и др.

 

Глубина проникновения твердой фазы глинистого раствора в круп-нозернистых песчаниках больше, чем в мелкозернистых, составляет 12 - 14 мм. В трещиноватых породах она составляет несколько метров. Толщи-на глинистой корки возрастает по мере увеличения пористости пород и может достигать 4 см и более. Проницаемость ее составляет 10-7 -10-3 мкм2. Диаметр ствола скважины увеличивается напротив глинистых пла-стов - в аргиллитах, мергелях, глинистых известняках. Это объясняется гидромониторным воздействием промывочного раствора в процессе буре-ния на горную породу, вызывающим образование каверн. Песчано-алевритовые породы более устойчивые к такому разрушению, поэтому на

 

 

181

месте их проходки диаметр ствола скважины не увеличивается, а наоборот сокращается за счет нарастания глинистой корки. Глинистые породы раз-мокают, размываются и выносятся промывочной жидкостью. Диаметр ствола скважины может увеличиваться против трещиноватых пород из-за ослабления их механической прочности в процессе бурения.

 

Для исключения проникновения в породу фильтрата бурового рас-твора продуктивные слои проходятся с промывочной жидкостью на нефтяной основе, в особенности, если давление в пласте низкое. В таком растворе хемогенные породы не растворяются, глины не размокают . Одна-ко, как отмечает В.П.Шафиева, применение буровых растворов на нефтя-ной основе имеет ряд недостатков: 1) требуется закрытая циркуляционная система в процессе очистки бурового раствора, исключающая загрязнение окружающей среды; 2) глинисто-нефтяная корка ухудшает качество це-ментирование скважин. В настоящее время для уменьшения зоны проник-новения фильтрата бурового раствора в пласты применяются современные малоглинистые растворы на полимерной основе с наполнителем – кальма-тантом (мраморная крошка, мел), не загрязняющим окружающую среду.

 

Горные породы проводят электрический ток в основном благодаря наличию в их поровом пространстве минерализованной воды. Чем выше минерализация воды, тем ниже ее удельное сопротивление. С повышением температуры сопротивление водных растворов уменьшается. Удельное со-противление глинистого раствора обычно меньше 1 ом. /м. Нефть и рас-творы на нефтяной основе электрический ток не проводят . Относительное электрическое сопротивление зависит от количества воды в единице объе-

ма породы, т.е. от коэффициента пористости коллектора: r = 1 / к п m , где m

10. показатель степени пористости, для песчаников изменяется от 1,3 до 2,3, К n - коэффициент пористости. Если нет фактических данных, принимают m = 2. Исследования показывают, что относительное сопротивление зави-сит не только от коэффициента пористости, но и от структуры порового пространства. Этим объясняется высокое сопротивление плотных пород по сравнению со слабо уплотненными породами. Пользуясь этой зависимо-стью по величине относительного сопротивления можно оценить пори-стость породы или наоборот, по пористости определить относительное со-противление. Каверны - изолированные и полуизолированные пустоты, заметного влияния на удельное сопротивление пород не оказывают. Нали-чие трещин, заполненных минерализованной водой, вызывает существен-ное снижение сопротивления. Изолированные пустоты относительно слабо влияют на удельное сопротивление пород. Нефть и газ, замещая в поровом пространстве воду, повышает удельное сопротивление породы. Степень электрического сопротивления нефтегазонасыщенной породы зависит от коэффициента нефтегазонасыщенности.

Полученное при каротаже значение сопротивления называется ка-жущимся сопротивлением - КС или r к. Оно зависит от четырех факторов:

 

182

В удельного сопротивления и мощностей пластов, против которых нахо-дится каротажный зонд; 2) диаметра скважин и удельного сопротивления заполняющей ее промывочной жидкости; 3) характера и степени проник-новения бурового раствора в пласт; 4) типа и размера зонда, которым про-изводят измерения. При проникновении бурового раствора в пласт его удельное сопротивление повышается (повышающее проникновение). Если в пласт проникает только фильтрат глинистого раствора, то удельное со-противление понижается (понижающее проникновение). Фактические кри-вые сопротивления, записанные в скважинах, имеют более сложные фор-мы, чем расчетные, что обусловлено неоднородностью пласта, изменчиво-стью диаметра ствола и зоны проникновения промывочной жидкости в по-роды. Высокое удельное сопротивление имеют гипсы, ангидриты, камен-ная соль, известняки, доломиты.

 

Электрическое сопротивление в скважинах замеривается различны-ми зондами, которые отличаются друг от друга по расстоянию и взаимо-расположению питающих (АВ) и измерительных (MN) электродов (табл. 26, расстояние между электродами выражено в метрах).

 

Стандартный каротаж является обязательной операцией во всех без исключения скважинах: измерения КС и ПС производятся при помощи стандартного трехэлектродного зонда. Это позволяет одновременно сопо-ставлять разрезы всех скважин между собой. Боковое каротажное зондиро-вание (БКЗ) производится несколькими однотипными зондами (обычно градиент-зондами) различной длины для определения истинного удельного сопротивления пластов и глубины проникновения фильтрата промывочной жидкости в пласт. Один из зондов БКЗ соответствует стандартному зонду для данного района. Для интерпретации фактических кривых используют-ся палетки теоретических кривых.

    Таблица 26
 

Виды электрического каротажа. По С.С. Итенбергу (1978г.)

N вид каротажа примеры зондов
п/п    
1 Градиент - зонд подошвенный А 4 М 0,5 N
2 Градиент - зонд кровельный N 0,5 M 4 A
3 Потенциал - зонд В 2,5 А 0,5 М
4 Боковой каротаж трехэлектродный Б К - 3
5 Боковой каротаж семиэлектродный A00,2 M1 0,2 N1 1,1 A1
6 Боковой каротаж девятиэлектродный A00,2 M1 0,2 N10,2 A1 0,9B1
7 Стандартный каротаж В 0,5 А 2 М

12. Резистивиметрия - определение удельного со-противления промывочной жидкости Кавернометрия - измерение диаметра скважи-

13. ны

Индукционный каротаж

10 Микрокаротаж ИК - 6 Ф 1
11   А 0,025 М 0,025 N
    А 0,05N

 

183

Боковой каротаж является более совершенным методом, произво-дится с применением трехэлектродных (БК-3) и многоэлектродных зондов. При этом достигается значительное снижение влияния диаметра скважины и вмещающих пород. Это позволяет диагностировать пласты средней и малой мощности, определять положение водонефтяного контакта в про-дуктивных пластах.

 

Индукционный каротаж ИК принципиально отличается от всех выше перечисленных видов каротажа тем , что измерения производятся без непо-средственного контакта электродов с промывочной жидкостью и горными породами. Поэтому он может применяться как в скважинах, заполненных глинистым раствором (проводящим ток), так и в скважинах, заполненных нефтью, газом, воздухом или промывочным раствором, приготовленным на нефтяной основе (не проводящими ток). Индукционный зонд генериру-ет переменный ток и создает переменное магнитное поле, индуцирующее в окружающих породах вихревые токи вокруг оси скважины.

Вихревые токи в породах создают вторичное магнитное поле. Первич-ное и вторичное магнитные поля индицируют электрический ток в приемной катушке, находящейся внутри зонда. Индуцированный ток усиливается и за-писывается регистрирующим прибором, находящимся на поверхности.

 

Таблица 27

Удельное сопротивление горных пород. По С.С.Итенбергу (1978г.)

 

  Горные породы

Удельное сопротивле-

п/п       ние,
        ом / м
1 Глина........................................... 1

- 50

2 Глина, содержащая соленую воду

0,5 - 10

3 Глинистые сланцы

50

-900
4 Песок........................................... 1

- 5000

5 Песок, насыщенный пресной водой

10

 
6 Песок, насыщенный соленой водой

0,2 - 4

7 Песок, насыщенный нефтью 2

- 150

8 Песчаник.....................................

30

- 10000
9 Известняк....................................

60

- 500000
10 Доломиты....................................

100 - 500000

11 Мергель....................................... 5

- 100

12 Каменная соль............................

30

- > 500000
13 Ангидрит....................................

1000 - 100000

14 Гранит........................................

300 -> 10000

15 Мрамор......................................

100 - 100000

16 Кристаллический сланец

200 - 20000

17 Бурый уголь.............................. 9

- 200

18 Каменный уголь....................... 1

- 200000

19 Нефть........................................

1000000000

20 Пресная вода............................

10

- 100
21 Морская вода...........................

0,6

22 Буровой раствор...........................

0,1 - 1

 

 

184

Зарегистрированная по стволу скважины кривая характеризует изме-нение удельной электропроводности пород в разрезе. Она соответствует перевернутой кривой кажущихся сопротивлений. Единицей измерения удельной проводимости является сименс на метр (См/м). Сименс- прово-димость проводника, имеющего сопротивление 1ом.

 

При отсчете удобнее пользоваться кажущимися удельными сопро-тивлениями. Поэтому на диаграммах индукционного каротажа показыва-ются две шкалы измерений: См/м и пересчитанные Ом/м. Зависимость между ними обратная.

 

Индукционный каротаж рекомендуется проводить в комплексе с другими методами сопротивлений, а также с методом ПС. Он позволяет более точно определять удельное сопротивление низкоомных водоносных коллекторов и положение водонефтяного контакта (рис.59).

 

Микрокаротаж - это каротаж сопротивления градиент - и потенциал - зондами малых размеров. Глубинность исследования при этом незначи-тельная, составляет 4 -12см. Диаграммы микрокаротажа позволяет выде-лять маломощные проницаемые и непроницаемые прослои.

 

 

Рис.59. Каротажные диаграммы пласта песчаника, снятые в скважине различными зондами:

 

I-короткий нормальный зонд ; II-кривая индукционного каротажа; III-кривая гамма-каротажа; IV-кривая акустического каротажа; (по С.С.Итенбергу,1978)

 

 

Метод самопроизвольной поляризации (ПС). Метод заключается

 

4. измерении разности потенциалов между электродом М, перемещающим-ся в скважине, заполненной промывочной жидкостью, и электродом N,

 

185

находящимся в заземленном состоянии вблизи устья скважины. Измерения производятся одновременно с записью кривой КС стандартным градиент - или потенциал - зондом, размер которого устанавливается единым для все-го района. Возникающее в скважине электрическое поле незначительное по величине, измеряется в милливольтах (мВ). Происхождение самопроиз-вольной (собственной, естественной) поляризации в скважине, заполнен-ной глинистым раствором или водой, обусловлено диффузионно-адсорбционными, фильтрационными и окислительно-восстановительными процессами, возникающими на контакте промывочной жидкости и горных пород, в порах и трещинах содержащих минерализованную воду.

 

Диффузно-адсорбционный потенциал зависит от литологического состава горных пород. Наибольшее его значение соответствует чистым глинам, наименьшее - чистым песчаникам (табл.28).

 

Таблица 28

Наиболее частые величины диффузионно-адсорбционного потенциала горных

пород при Т = 18°С (по С.С. Итенбергу, 1982)

 

  Горные породы Потенциал , мВ
1 пески, песчаники неглинистые -5 - 10
2 песчаники глинистые 5 - 20
3 алевриты, сильно глинистые песчаники 10 - 35
4 глины, аргиллиты 35 - 50

 

Глинистый и лимонитовый цементы обладают наибольшей дисперсно-стью и адсорбционной емкостью. Карбонатный цемент имеет меньшую, а кремнистый цемент - еще меньшую дисперсность и адсорбционную емкость.

 

 

Рис.60. Кривые ПС против одиночных пластов песчаников различных мощностей и удельных сопротивлений (а , б, в,) и против пачки пластов (г) (по И.Г.Пермякову и Е.Н.Шевкунову,1971):

 

1-удельное сопротивление пласта ρп, вмещающих пород ρвм и бурового раствора ρс одинаковы;2- ρп = ρвм =20·ρс

 

 

186

К увеличением в породе количества глинистого материала возраста-ет коэффициент диффузионно-адсорбционного потенциала. Окислительно-восстановительные и фильтрационные потенциалы, как правило, имеют малозначительное влияние и учитываются только в особых случаях.

 

Кривые ПС широко используются для расчленения разреза на гли-нистые и песчаные пласты. Амплитуда аномалий ПС отсчитывается от ли-нии глин, иногда называемой нулевой линией. Эта линия проводится про-тив мощных пластов глин. Обычно это прямая линия. Форма и амплитуда отклонения кривой от линии глин зависит от мощности песчаного пласта, типа промывочной жидкости, пластовой воды и глубины проникновения фильтрата бурового раствора. Напротив мощных неглинистых песчаных пластов амплитуда отклонения кривой максимальная, близка к величине естественного потенциала - Епс. Чем меньше мощность песчаного пласта, тем меньше амплитуда отклонения. Алевролиты и глинистые песчаники отображаются аномалиями средней величины. Границы пластов проводят-ся по середине аномальных отклонений кривой от линии глин (рис.60).

В карбонатных разрезах по кривым ПС выделяются интервалы, обо-гащенные глинистым материалом - глинистые известняки, мергели. Мета-морфические и изверженные горные породы тонкодисперсный материал не содержит, поэтому в них четкие аномалии ПС не возникают.

 

Радиоактивный каротаж. Гамма - каротаж (ГК) - один из видов ра-

 

диоактивного каротажа, регистрирующий естественное гамма - излучение горных пород. Радиоактивность их обусловлена присутствием урана, то-рия, радиоактивных изотопов калия и продуктов их распада.

 

По величине естественной радиоактивности осадочные горные по-роды подразделяются на три группы.

 

14) Породы высокой радиоактивности. К ним относятся глубоковод-ные глинистые осадки: глобигериновые и радиоляриевые илы, черные би-туминозные глины, аргиллиты, глинистые сланцы, калийные соли.

 

15) Породы средней радиоактивности. Это - широко распространен-ные глинистые породы, песчаники глинистые, мергели, глинистые извест-няки и доломиты.

 

16) Породы низкой радиоактивности: гипсы, ангидриты, пески, пес-чаники, известняки, доломиты, часть каменных углей.

 

Повышенная радиоактивность глинистых пород по сравнению с дру-гими осадочными породами объясняется их способностью к адсорбции ка-тионов радиоактивных элементов из водного раствора и длительностью накопления. В сероводородной (сульфидной), сульфидно - сидеритовой геохимических фациях существуют условия для интенсивной адсорбции урана из водного раствора.

Гамма - излучение представляет собой высокочастотное электромаг-нитное излучение, возникающее в результате ядерных процессов. В ствол

 

187

скважины опускается индикатор гамма - излучения - счетчик Гейгера или сцинциляционный счетчик, по показаниям которых строится гамма - кри-вая. Обсадная колонна, буровой раствор и цементное кольцо поглощают гамма - излучение горных пород. По этой причине при выходе из необса-женной части скважины в обсаженную отмечается снижение интенсивно-сти гамма - излучения, что вызывает смещение кривых и снижение диффе-ренцированности диаграммы каротажа. Такое же явление наблюдается при переходе глубинного прибора из одноколонной скважины в двухколон-ную. Для снятия этих искажений в показаниях прибора при количествен - ной интерпретации данные каротажа приводятся к стандартным условиям.

 

Гамма - каротаж проводится во всех случаях, когда кривая ПС явля-ется слабо дифференцированной вследствие близости минерализаций пла-стовой воды и фильтрата бурового раствора, а также, когда запись ПС не-возможна (например, при заполнении скважины непроводящим раствором на нефтяной основе). Диаграммы гамма - каротажа применяются для выде-ления в разрезе глинистых пластов, определения степени глинистости пес-чаных пород и корреляции разрезов скважин, в том числе и обсаженных колонной.

Гамма - гамма - каротаж - ГГК. Гамма - гамма - зонд состоит из ис-точника - излучателя гамма - квантов и индикатора - регистратора рассе-янного гамма - излучения, исходящего от горных пород после воздействия на них гамма - лучами . Источником гамма - излучения является изотоп ко-бальта 60Со. В ГГК - методе различают две модификации: плотностной (ГГК - П) и селективный (ГГК - С). ГГК-П применяется для измерения плотностей горных пород в скважине.

 

При воздействии гамма - квантов на горную породу происходит их рассеивание и поглощение. Чем больше плотность породы, тем больше рассеивание и тем меньше регистрируемое излучение. На кривой ГГК - П минимальные показания соответствуют плотным породам - ангидритам, плотным известнякам и доломитам. Средними значениями отмечаются глинистые известняки, песчаники , максимальными значениями – менее плотные породы: высокопористые песчаники и известняки, а также камен-ная соль, глины. По показаниям ГГК - П можно определять общую пори-стость горной породы, включая объемы пор, каверн, трещин, вне зависи-мости от их открытости и закрытости. Для более надежной оценки плотно-сти пород методом ГГК - П применяется двухзондовая установка различ-ной длины и одновременно записывается кавернограмма.

При селективной модификации ГГК регистрируется мягкая компо-нента гамма - излучения, которая поглощается горной породой, вызывая фотоэлектрический эффект. Применяется для выявления угольных и руд-ных пластов.

 

188

Нейтронный каротаж. Скважинный зонд для нейтронного каротажа состоит из излучателя нейтронов и индикатора плотности нейтронов после их взаимодействия с горной породой. В горной породе часть нейтронов рассеивается, а другая часть их захватывается ядрами атомов. Чем меньше масса ядра, тем больше потеря энергии нейтрона. Наибольшую потерю энергии нейтрон испытывает при столкновении с ядром атома водорода. Следовательно, чем выше водородосодержание породы, тем быстрее убы-вает плотность нейтронов по мере удаления от источника. Водородосо-держание породы зависит от ее водосодержания и нефтесодержания. Нефть и вода содержат почти одинаковое количество водорода, газ имеет низкую плотность и соответственно - меньше водорода.

 

Различают три вида нейтронного каротажа:

 

и нейтронный гамма - каротаж - НГК;

 

и нейтронный каротаж по тепловым нейтронам - НК - Т;

 

и нейтронный каротаж по надтепловым нейтронам - НК - Н. Нейтронный гамма - каротаж - НГК. Захват нейтрона атомами горных

 

пород сопровождается испусканием гамма - квантов, что выражается возник-новением вторичного гамма - излучения. Кроме водорода высокой способно-стью захвата нейтронов обладают атомы хлора, бора, лития, кадмия, кобальта. Хлор присутствует в минерализованной воде. В результате этого против водо-носной части продуктивного пласта показания вторичного гамма - излучения повышаются по сравнению с показаниями против нефтеносной его части. Эта особенность кривой НГК используется для установления водонефтяного кон-такта (ВНК) залежей и контролирования его продвижения по мере извлечения из них нефти в процессе эксплуатации. Выделение газоносных пластов по кривой НГК в общем случае затрудняется.

 

Осадочные горные породы по нейтронным свойствам подразделяют-ся на две группы.

 

и Породы высокого водородосодержания. К ним относятся глины, гипсы и высокопористые песчаники, карбонаты. Глины характеризуются высокой влагоемкостью и пористостью, содержат значительное количе-ство минералов с химически связанной водой (водные алюмосиликаты). Гипсы содержат химически связанную воду. Высокопористые породы в естественных условиях насыщены водород - содержащими жидкостями (вода, нефть). Эти породы поглощают нейтроны, поэтому отмечаются низ-кими показаниями плотности нейтронов вблизи индикатора, расположен-ного в верхней части зонда на расстоянии 0,4 - 0,5м от источника. Глубина исследования составляет 0,2 - 0,6м.

и Породы низкого водородосодержания. В эту группу входят плот-ные известняки, доломиты, сцементированные песчаники, алевролиты, а также гидрохимические образования (ангидриты, каменная соль). На диа-

 

189

граммах нейтронного гамма - каротажа эти породы выделяются высокими показаниями плотности нейтронов. Глинистые песчаники и известняки от-мечаются средними показаниями.

 

Нейтронный каротаж по тепловым нейтронам (НК - Т) дает такие же результаты, что и нейтронный гамма - каротаж: водород - содержащие горные породы выделяются низкими показаниями, плотные породы - более высокими показаниями индикатора гамма - излучения. Зонд НК - Т более чувствителен к содержанию хлора и других химических элементов, обла-дающих высокими способностями захвата тепловых нейтронов.

 

Нейтронный каротаж по надтепловым нейтронам (НК - Н) высоко-чувствителен к водородосодержанию горных пород и жидкостей.

 

и обсаженной скважине показания НГК, НК - Т и НК - Н понижают-ся, дифференциация кривой ухудшается. Поэтому нейтронный каротаж проводится в необсаженных скважинах. В практике работ наиболее часто применяется НГК. При низкой минерализации пластовых вод и промывоч-ной жидкости целесообразнее пользоваться методом НК - Т. Полученные диаграммы позволяют расчленить разрез на пласты и пачки глин, плотных пород и повышенной пористости. В сочетании с ГГК - П нейтронные ме-тоды позволяют выявлять газонасыщенные интервалы, газожидкостные и водонефтяные контакты.

Метод радиоактивных изотопов применяется на стадии разработки залежей нефти и газа. В скважину и пласты закачивается растворы солей радиоактивных изотопов. После этого по стволу скважины производится измерение гамма - излучения. Для этой цели применяются короткоживу-щие изотопы:

 

цирконий - 95 (Т1 / 2 = 65 дней), железо - 59 (Т1 / 2 = 45,1 дня) и др. Ин-терпретация результатов измерений при работе с радиоактивными изото-пами заключается в сопоставлении диаграмм гамма - каротажа, получен-ных в скважине до ввода в нее радиоактивного вещества и после ввода. Полученный результат позволяет выявить участки проникновения и дви-жения жидкости в пласте в процессе разработки, образование гидродина-мических связей между объектами разработки, зон трещиноватости и др.

 

Акустический каротаж – АК. Зонд акустического каротажа состоит из излучателя упругих волн звукового или ультразвукового диапазона и приемника волн. По типу регистрации акустических параметров различают два вида каротажа: 1) акустический каротаж по скорости распространения волн. 2) акустический каротаж по затуханию волн. С помощью акустиче-ского каротажа решаются следующие вопросы:

 

В определение коллекторских пород, вскрытых скважинами;

 

В выделение зон трещиноватости и кавернозности в карбонатном

 

разрезе;

 

190

26. оценка литологического состава горных пород;

 

27. определение средних и пластовых скоростей распространения упругих волн;

 

28. контроль технического состояния скважины - качества цемента-ции и высоты подъема цементного кольца в затрубном пространстве.

Акустический каротаж по скорости. Излучатель волн находится в верхней части зонда П10,5П21,5И. Два приемника расположены в его сред-ней и нижней частях. Каротаж основан на определении скорости распро-странения упругих волн в горных породах по времени вступления в пер-вый и второй приемники:

 

V пл=

S  

1

  t 2 - t1  
 

,

D Т =

 

=

   
t 2 - t1 V пл S  

 

V пл - пластовая скорость, S - расстояние между двумя приемниками (база зонда), D Т - интервальное время - время пробега на единицу длины, мкс/м. Низкими скоростями распространения упругих продольных волн характеризуются слабо сцементированные песчано - глинистые породы, высокими - известняки и доломиты (табл.29).

 

При акустическом каротаже по скорости регистрируется время про-бега волны к единице длины - D Т, мкс/м. Между последним и коэффици-ентом пористости горных пород по лабораторным данным устанавливается прямая статистическая зависимость. С глубиной скорость распространения упругих волн возрастает. На величину скорости оказывает влияние и тип цемента обломочных горных пород. Глинистый цемент вязкий, обладает пластичностью и сжимаемостью. Карбонатный и кремнистый типы цемен-та жесткие, способствуют сокращению пористости и повышению скорости распространения волн. Горизонтально ориентированные трещины снижа-ют скорость распространения волны, в то время как вертикальные трещи-ны и отдельные каверны мало изменяют скорость волны в породе.

 

Акустический каротаж по затуханию основан на измерениях погло-щения упругих колебаний горными породами. В скважинном приборе устанавливается два излучателя упругих колебаний (зонд И20,5И11,5П) ультразвуковой частоты (15-35 кГц) и один приемник. Ослабление про-дольной волны измеряется по разности амплитуд волн от ближнего и дальнего излучателей.

 

При каротаже записываются две кривые:

 

В А1/АОП - отношение амплитуды А1 к амплитуде опорного пласта АОП, за который принимается мощный пласт плотных пород с наибольшей амплитудой,

 

В αАК - коэффициент поглощения.

 

 

191


        Таблица 29
 

Акустические свойства горных пород. По С.С.Итенбергу (1978г.)

   

 

 
п/п Горные породы и др. вещества

Скорость,

DТ,
   

м/ с

мкс /м
1 Воздух 300 - 350 330 - 280
2 Метан

430

2100
3 Нефть 1300 - 1400 770 - 710
4 Вода, глинистый раствор 1500 - 1700 660 - 600
5 Лед 3100 - 3600 320 - 280
6 Сталь

5400

185
7 Песок

800 - 1800

1250 - 550
8 Глина 1200 - 2500 800 - 400
9 Песчаник слабо сцементированный 1500 - 2500 660 - 400
10 Песчаник плотный 3000 - 6000 330 - 170
11 Мергель 2000 - 3500 500 - 300
12 Известняк, доломит 5000 - 7500 200 - 130
13 Ангидрит, гипс 4500 - 6500 220 - 130
14 Каменная соль 4500 - 5500 220 - 180
15 Кристаллические породы 4500 - 6500 220 - 150

 

 

На ослабление амплитуды колебаний волны указывают отклонение кривой А1/АОП влево, кривой αАК вправо. Глинистые пласты отмечаются максимумом по кривой αАК и минимумом кривой А1/АОП.

 

На величину затухания упругих колебаний сильное влияние ока-зывают глинистость, характер насыщения пор, трещиноватость и ка-вернозность пород. Минимальными амплитудами волн и максималь-ными значениями D Т характеризуются глины и аргиллиты . Максималь-ные амплитуды колебаний и минимальные D Т характерны для плотных карбонатных и песчаных пород. Песчаники и алевролиты, обладающие значительной пористостью, характеризуются промежуточными значе-ниями интервального времени и амплитудных показаний. В слабо сце-ментированных нефтеносных и газоносных породах с хорошей пори-стостью затухание колебаний происходит более интенсивно, чем в та-ких же породах, но водоносных. Это особенно заметно в газоносных породах. Наибольшее затухание претерпевают упругие волны в трещи-новатых и кавернозных породах. По этой причине этот вид каротажа эффективно применяется для исследования скважин, вскрывающих карбонатные породы. Заметно снижают скорость распространения и амплитуду упругих волн тонкослоистые песчано-глинистые породы. Для отличия трещинно-кавернозных зон от заглинизированных пород и количественной интерпретации диаграмм акустического каротажа при-влекаются данные других методов - стандартного электрического, НГК, ГК, БК - 3 (рис.61).

 

192

 

Рис.61. Пример выделения коллекторов в терригенном разрезе различными - видами каротажа скважины (по С.С.Итенбергу,1978):

 

1-линия глин; 2- песчаник; 3-глина; 4-аргиллит; d - номинальный диаметр скважины. U/ПС, U//ПС, U///ПС -отклонения кривой ПС против различных пород. U//ПС - отклонения кривой ПС против опорного пласта