Условия и ограничения применения критерия хи-квадрат Пирсона
1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии от 0 до 3).
2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение меньше 10, то для анализа лучше использовать точный критерий Фишера.
5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек. В случае несоблюдения данного условия для сравнения долей следует также использовать точный критерий Фишера.
Как рассчитать критерий хи-квадрат Пирсона?
1. Рассчитываем ожидаемое количество наблюдений для каждой из ячеек таблицы сопряженности (при условии справедливости нулевой гипотезы об отсутствии взаимосвязи) путем перемножения сумм рядов и столбцов с последующим делением полученного произведения на общее число наблюдений. Общий вид таблицы ожидаемых значений представлен ниже:
Исход есть (1) | Исхода нет (0) | Всего | |
Фактор риска есть (1) | (A+B)*(A+C) / (A+B+C+D) | (A+B)*(B+D)/ (A+B+C+D) | A + B |
Фактор риска отсутствует (0) | (C+D)*(A+C)/ (A+B+C+D) | (C+D)*(B+D)/ (A+B+C+D) | C + D |
Всего | A + C | B + D | A+B+C+D |
2. Находим значение критерия χ2 по следующей формуле:
где i – номер строки (от 1 до r), j – номер столбца (от 1 до с), Oij – фактическое количество наблюдений в ячейке ij, Eij – ожидаемое число наблюдений в ячейке ij.
3. Определяем число степеней свободы по формуле: f = (r – 1) × (c – 1). Соответственно, для четырехпольной таблицы, в которой 2 ряда (r = 2) и 2 столбца (c = 2), число степеней свободы составляет f2x2 = (2 - 1)*(2 - 1) = 1.
4. Сравниваем значение критерия χ2 с критическим значением при числе степеней свободы f (по таблице).
Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.
В том случае, если полученное значение критерия χ2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.
Точный критерий Фишера – это критерий, который используется для сравнения двух и более относительных показателей, характеризующих частоту определенного признака, имеющего два значения. Исходные данные для расчета точного критерия Фишера обычно группируются в виде четырехпольной таблицы, но могут быть представлены и многопольной таблицей.
Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.
Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.