Принцип работы сканеров
Сканеры
Сканер - это устройства ввода текстовой или графической информации в компьютер путем преобразования ее в цифровой вид для последующего использования , обработки, хранения или вывода.
Настольные сканеры появились в 80-х годах и сразу стали объектом повышенного внимания, но сложность использования, отсутствия универсального программного обеспечения, а самое главное, высокая цена не позволяли выйти сканерам за пределы специализированного использования.
С тех пор прошло не так уж и много времени, но выделилось целое направление настольных сканеров предназначенных в основном для офисного и домашнего использования. Причем, за последние несколько лет, благодаря невероятному снижению цен популярность сканеров значительным образом выросла. Цена хорошего планшетного сканера сегодня соизмерима с ценой хорошей видео карты или принтера, поэтому логично продолжить покупку компьютера и принтера, приобретением сканера.
Настольный сканер незаменим при работе с компьютером, если у Вас есть потребность делать вставки графических изображений или текстов с бумажных носителей в документы, создаваемые при помощи компьютера. Современные настольные сканеры достаточны просты в использовании, имеют интуитивно-понятный интерфейс, но существует ряд характеристик и особенностей, на которые следует обращать внимание при выборе сканера.
Принцип работы сканеров
Чтобы иметь представление о характеристиках, объявляемых производителями сканеров, а также используемых как критерии в тестах, необходимо иметь общее представление о физических принципах, которые используются в работе сканеров. Далее при рассмотрении характеристик мы не раз обратимся к механизму работы сканера.
Лампа подсветки и система зеркал установлены на каретке, которая передвигается при помощи шагового двигателя. Свет от лампы установленной на каретке при сканировании на каждом шаге двигателя отражается от документа и через систему зеркал попадает на матрицу, состоящую из чувствительных элементов, которые определяют интенсивность отраженного света путем преобразования в электрический сигнал. Эти чувствительные элементы обычно называют CCD (английская аббревиатура Couple-Charged Device) и в русском приблизительном переводе звучит как ПЗС (прибор с зарядовой связью). Далее происходит преобразование аналогового сигнала в цифровой с последующей обработкой и передачей в компьютер для дальнейшего использования. Таким образом на каждом шаге каретки сканер фиксирует одну горизонтальную полоску оригинала, разбитую в свою очередь на некоторое количество пикселов на линейке ПЗС. Итоговое изображение составленное из полосок представляет собой как бы мозаику составленную из плиток (пикселов) одинакового размера и разного цвета.
Классификация и характеристики планшетных сканеров.
1. Однопроходный или трехпроходный
Раньше для цветного сканирования приходилось использовать трехпроходную технологию То есть первый проход с красным фильтром для получения красной составляющей, второй - для зеленой составляющей и третий - для синей. Такой метод имеет два существенных недостатка: малая скорость работы и проблема объединения трех отдельных сканов в один, с вытекающим отсюда несовмещением цветов.
Решением стало создания True Color CCD, позволяющих воспринимать все три цветовые составляющие цветного изображения за один проход. True Color CCD является стандартом на данный момент и в мире уже никто не выпускает трехпроходные сканеры.
Однопроходные сканеры используют одну из двух подсистем для получения данных о цвете изображения: некоторые используют ПЗС со специальным покрытием, которое фильтрует цвет по составляющим, другие используют призму для разделения цветов.
Сейчас на рынке нет трехпроходных сканеров. Аналогично в свое время прекратили существование черно-белые планшетные сканеры.
2. Аппаратный интерфейс
Цифровые данные от сканера передаются в компьютер посредством аппаратного интерфейса.
Наиболее распространенный способ передачи данных для планшетных сканеров - это SCSI интерфейс, который является платформо-независимым и позволяет использовать сканер, как на Macintosh, так и на PC. Большинство производителей комплектует сканер урезанным адаптером SCSI, позволяющим подключить только сканер.
В последнее время все большей популярностью пользуются модели, подключаемые к параллельному порту компьютера, не требующие снимать крышку системного блока компьютера для установки платы. Как правило, все сканеры с таким интерфейсом, имеют прозрачный порт для подключения принтера.
Кроме того, сейчас есть планшетные сканеры, которые имеют собственную интерфейсную плату, которая помимо функции передачи данных, осуществляет электрическое питание сканера от системного блока компьютера. Подключение такого сканера сводится к установке интерфейсной платы, подключении шнура сканера к внешнему разъему на плате, установке драйверов и программного обеспечения. Питание на сканер будет подаваться только при запуске программы сканирования.
3. Разрешение сканера.
3.1. Оптическое разрешение.
Оптическое разрешение - одна из основных характеристик сканера. Измеряется в точках на дюйм, DPI. Для настольных сканеров вы можете встретить: 300х300, 400х400, 300х600, 400х800, 600х600, 600х1200 dpi.
Для понимания, что такое оптическое разрешение представьте себе шахматную доску 8х8 размером дюймХдюйм (дюйм=2.54 см). Разрешение этой доски будет 8х8. Если эта доска будет иметь триста квадратов по каждой оси, то соответственно ее разрешение будет 300х300. Соответственно чем больше разрешение, тем более детальную информацию об изображении можно получить.
Касательно механизма сканера, оптическое разрешение сканера определяется ПЗС матрицей по горизонтальной оси. Количество шагов на дюйм, которое позволяет делать двигатель сканера при перемещении каретки, определяет разрешение по вертикальной оси. В связи с этим многие производители указывают разные значения по горизонтали и вертикали, как правило, таким образом завышая реальное разрешение, так как у сканера с разрешением 300х600 (300 по линейке ПЗС и 600 по шаговому двигателю) при заданном разрешении 600 программное приложение (иногда это делается на аппаратном уровне) будет искусственным образом увеличивать разрешение по линейки математически рассчитывая недостающие точки. Представьте если бы он реально сканировал с разными значениями по вертикали и горизонтали, то получая с одного дюйма по одной оси в два раза больше точек чем по другой, итоговое изображение было бы растянуто в два раза по вертикальной оси. Поэтому при выборе сканера во внимание нужно принимать меньшее значение, которое показывает реальное оптическое разрешение сканера.
3.2. Интерполированное разрешение
Эту характеристику очень любят производители настольных сканеров, часто включая в название и нанося большими буквами на красочной коробке. Вы можете увидеть 4800, 9600 и т.д.
Интерполированное разрешение - искусственно увеличенное разрешение сканера, достигается программным путем в драйвере сканера при помощи математических алгоритмов, не несет практической ценности и никем не используется в жизни.
4 Глубина цвета
Грубо говоря, человеческий глаз способен воспринимать порядка 17 миллионов оттенков цвета или 256 градаций серого (фотографическое качество), хоть это и не совсем верно, но для отображения на мониторах этого количества цветов вполне достаточно. Это соответствует 24-битному представлению цвета или 8-битному для изображения в градациях серого.
Сейчас вы вряд ли сможете найти черно-белые планшетные сканеры, потому что производится огромное число доступных цветных моделей. Ниже описан механизм получения цвета в сканере.
В сканере электрический сигнал с CCD матрицы преобразуется в цифровой при помощи аналого-цифрового преобразователя. Разрядность АЦП и качество исполнения СCD определяет глубину цвета сканера. Получая по каждой цветовой составляющей 256 градаций (8 бит), в цвете выходит 8х3=24 бит=16.77 млн. оттенков.
Все настольные сканеры сейчас позволяют получить 24-битный цвет. Графические адаптеры и мониторы поддерживают 24-битный цвет, но уже не поддерживают 30 или 36 битный цвет.
При этом также существуют сканеры с 30 битным и 36 битным представлением цвета (10 и 12 бит соответственно на каждую составляющую). Реально вы будете работать с 24-битным цветом, но при большой разрядности АЦП, имея избыточную информацию, можно производить цветовую корректировку изображения в большом диапазоне без потери качества. Сканеры, имеющие большую глубину цвета, позволяют сохранить больше оттенков и переходов в темных тонах.