14. окисления этанола оксидом меди (II)

15. бромирования фенола

16. межмолекулярной дегидратации этанола

17. нитрования фенола

сумма коэффициентов равна

1) 4

2) 5

3) 7

4) 8

 

18. В реакции этерификации группа ОН отщепляется от молекулы

1) спирта

2) альдегида

3) кетона

4) кислоты

 

19. С помощью хлорофилла в зеленом растении образуются

1) кислород

2) вода

3) глюкоза

4) этанол

 

20–21. Химические свойства глюкозы, характерные для

20. спиртов

21. альдегидов

проявляются в реакции

1) спиртового брожения

2) «серебряного зеркала»

3) этерификации

4) нейтрализации

 

22–24. При нагревании с водой в присутствии H2SO4 углевода

22. крахмал

23. целлюлоза

24. сахароза

после окончания гидролиза получают

1) этанол

2) фруктозу

3) глюконовую кислоту

4) глюкозу

 

25. Способы получения этанола – это

1) гидратация этена

2) брожение глюкозы

3) восстановление этаналя

4) окисление этаналя

 

26. Способы получения этиленгликоля – это

1) окисление этена

2) гидратация этена

3) действие щелочи на 1,2‑С2Н4Cl2

4) гидратация этина

 

27. Способы получения муравьиной кислоты – это

1) окисление метана

2) окисление фенола

3) окисление метанола

4) реакция СН3ОН с СО

 

28. Для синтеза уксусной кислоты используют соединения

1) С2Н5ОН

2) С4Н10

3) C2H5NO2

4) СН3ОН

 

29. Метанол применяется в производстве

1) пластмасс

2) каучуков

3) бензинов

4) жиров и масел

 

30. Для распознавания фенола (в смеси с бутанолом‑1) используют

1) индикатор и раствор щелочи

2) бромную воду

3) гидроксид меди (II)

4) аммиачный раствор оксида серебра (I)

 

31. Для распознавания в своих растворах глицерина, уксусной кислоты, ацетальдегида и глюкозы подходит один и тот же реактив

1) NaOH

2) Cu(OH)2

3) H2SO4 (конц.)

4) Ag2O (в р‑ре NH3)

 

32. Органическое вещество – продукт гидратации ацетилена, которое вступает в реакцию «серебряного зеркала», а при восстановлении образует этанол, – это

1) ацетальдегид

2) уксусная кислота

3) пропан

4) ацетон

 

33. Продукты А, Б, и В в схеме реакций СO2 + Н2O → фотосинтез А → брожение – СO2 Б → HCOOH B

– это соответственно

1) этанол

2) глюкоза

3) пропановая кислота

4) этилформиат

 

34. Фенол будет участвовать в процессах:

1) дегидратации

2) бромирования

3) изомеризации

4) нейтрализации

5) нитрования

6) «серебряного зеркала»

 

35. Возможно протекание реакций:

1) твердый жир + водород →…

2) муравьиная кислота + формальдегид →…

3) метанол + оксид меди (II) →…

4) сахароза + вода (в конц. H2SO4) →…

5) метаналь + Ag2O (в р‑ре NH3) →…

6) этиленгликоль + NaOH (р‑р) →…

 

36. Для промышленного синтеза фенолформальдегидной смолы следует взять набор реагентов

1) С6Н6, НС(Н)O

2) С6Н6, СН3С(Н)O

3) С6Н5ОН, НС(Н)O

4) С6Н5ОН, СН3С(Н)O

 

 

11. Азотсодержащие органические соединения

 

11.1. Нитросоединения. Амины

 

Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO2, аминогруппы NH2 и амидогруппы (пептидной группы) – C(O)NH, причем всегда атом азота будет непосредственно связан с атомом углерода.

Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например:

 

 

Низшие нитроалканы (бесцветные жидкости) используются как растворители пластмасс, целлюлозного волокна, многих лаков, низшие нитроарены (желтые жидкости) – как полупродукты для синтеза аминосоединений.

Амины (или аминосоединения) можно рассматривать как органические производные аммиака. Амины могут быть первичными R – NH2, вторичными RR'NH и третичными RR'R" N, в зависимости от числа атомов водорода, которые замещены на радикалы R, R', R". Например, первичный амин – этиламин C2H5NH2, вторичный амин – дижетиламин (CH3)2NH, третичный амин – триэтиламин (C2H5)3N.

Амины, как и аммиак, проявляют основные свойства, они в водном растворе гидратируются и диссоциируют как слабые основания:

 

 

а с кислотами образуют соли:

 

 

Третичные амины присоединяют галогенпроизводные с образованием солей четырехзамещенного аммония:

 

 

Ароматические ажины (в которых аминогруппа связана непосредственно с бензольным кольцом) являются более слабыми основаниями, чем алкиламины, из‑за взаимодействия неподеленной пары электронов атома азота с π‑электронами бензольного кольца. Аминогруппа облегчает замещение водорода в бензольном кольце, например на бром; из анилина образуется 2,4,6‑триброманилин:

 

 

Получение: восстановление нитросоединений с помощью атомарного водорода (получают либо непосредственно в сосуде по реакции Fe + 2НCl = FeCl2 + 2Н0, либо при пропускании водорода Н2 над никелевым катализатором Н2 = 2Н0) приводит к синтезу первичных аминов:

a)

б) реакция Зинина

Амины используются в производстве растворителей для полимеров, лекарственных препаратов, кормовых добавок, удобрений, красителей. Очень ядовиты, особенно анилин (желто‑коричневая жидкость, всасывается в организм даже через кожу).

 

11.2. Аминокислоты. Белки

 

Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH2; являются основой белковых веществ.

Примеры:

 

 

Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):

 

 

и сложные эфиры (подобно другим органическим кислотам):

 

 

С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:

 

 

Реакцию образования глицинатов и солей глициния можно объяснить следующим образом. В водном растворе аминокислоты существуют в трех формах (на примере глицина):

 

 

Поэтому глицин в реакции со щелочами переходит в глицинат‑ион, а с кислотами – в катион глициния, равновесие смещается соответственно в сторону образования анионов или катионов.

Белки – органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.

При гидролизе белков получают смесь аминокислот, например:

 

 

По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 105 остатков аминокислот, что отвечает относительной молекулярной массе 1 • 104 – 1 • 107.

Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH2 другой молекулы:

 

 

Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.

При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.

 

Примеры заданий частей А, В, С

 

1–2. Класс органических веществ

1. нитросоединения

2. первичные амины

содержит функциональную группу

1) – О – NO2

2) – NO2

3) – NH2

4) – NO3

 

3. Водородные связи образуются между молекулами

1) формальдегида

2) пропанола‑1

3) циановодорода

4) этиламина

 

4. Число структурных изомеров из группы предельных аминов для состава C3H9N равно

1) 1

2) 2

3) 3

4) 4

 

5. В водном растворе аминокислоты CH3CH(NH2)COOH химическая среда будет

1) кислотной

2) нейтральной

3) щелочной

4) любой

 

6. Двойственную функцию в реакциях выполняют (по отдельности) все вещества набора

1) глюкоза, этановая кислота, этиленгликоль

2) фруктоза, глицерин, этанол

3) глицин, глюкоза, метановая кислота

4) этилен, пропановая кислота, аланин

 

7–10. Для реакции в растворе между глицином и

7. гидроксидом натрия

8. метанолом

9. хлороводородом

10. аминоуксусной кислотой продуктами будут

1) соль и вода

2) соль

3) дипептид и вода

4) сложный эфир и вода

 

11. Соединение, которое реагирует с хлороводородом, образуя соль, вступает в реакции замещения и получается восстановлением продукта нитрования бензола, – это

1) нитробензол

2) метиламин

3) анилин

4) фенол

 

12. При добавлении лакмуса к бесцветному водному раствору 2‑аминопропановой кислоты раствор окрашивается в цвет:

1) красный

2) желтый

3) синий

4) фиолетовый

 

13. Для распознавания изомеров со строением СН3–СН2–СН2–NO2 и NH2–СН(СН3) – СООН следует использовать реактив

1) пероксид водорода

2) бромная вода

3) раствор NaHCO3

4) раствор FeCl3

 

14. При действии концентрированной азотной кислоты на белок появляется… окрашивание:

1) фиолетовое

2) голубое

3) желтое

4) красное

 

15. Установите соответствие между названием соединения и классом, к которому оно относится

 

 

16. Анилин действует в процессах:

1) нейтрализация муравьиной кислотой

2) вытеснение водорода натрием

3) получение фенола

4) замещение с хлорной водой

 

17. Глицин участвует в реакциях

1) окисления с оксидом меди (II)

2) синтеза дипептида с фенилаланином

3) этерификации бутанолом‑1

4) присоединения метиламина

 

18–21. Составьте уравнения реакций по схеме

18.

 

19.

 

20.

 

21.

 

 

12. Химические реакции. Скорость, энергетика и обратимость

 

12.1. Скорость реакций

 

Количественной характеристикой быстроты течения химической реакции А + B → D + E является ее скорость, т. е. скорость взаимодействия частиц реагентов А и В или скорость появления продуктов D и Е. Изучением скорости химических реакций занимается особый раздел химии – химическая кинетика.

В гомогенных (однородных) системах исследуется скорость реакции между реагентами, не имеющими границы раздела (газовые реакции, реакции в растворах). В гетерогенных системах изучается скорость реакции на поверхности раздела между реагирующими веществами (например, А – твердое вещество, В – газ или А – твердое вещество, В – вещество в растворе).

Для гомогенных систем скорость реакции – это изменение концентраций реагентов или продуктов в единицу времени:

 

 

где v – скорость реакции, моль/(л с);

Δcреаг = (с'реаг – с"реаг) ― уменьшение концентрации реагентов, моль/л, за промежуток времени Δτ = τ2 – τ1;

Δcпрод = (с"прод – с'прод) – увеличение концентрации продуктов, моль/л, за тот же промежуток времени.

В начальный момент времени (τ = 0) концентрация реагентов наибольшая, а концентрация продуктов равна нулю. В процессе реакции концентрация реагентов уменьшается, а концентрация продуктов растет.

К факторам, влияющим на скорость реакции, относятся природа реагентов, катализатор, температура, концентрация реагентов.

1. Природа реагентов. Здесь большую роль играет характер химических связей в соединениях, строение их молекул. Например, выделение водорода цинком из раствора хлороводорода происходит значительно быстрее, чем из раствора уксусной кислоты, так как полярность связи Н – Cl больше, чем связи О – Н в молекуле СН3СООН; иначе говоря, из‑за того, что НCl – сильный электролит, а СН3СООН – слабый электролит в водном растворе.

Чем больше поверхность соприкосновения реагирующих веществ, тем быстрее протекает реакция. Поверхность твердого вещества может быть увеличена путем его измельчения или растворения (если вещество растворимо). Реакции в растворах протекают практически мгновенно.

2. Катализаторы. Большое влияние на скорость реакции оказывают катализаторы – вещества, увеличивающие скорость реакции (часто от нуля до очень больших значений), но не входящие в состав продуктов. Увеличение скорости реакции под влиянием катализаторов называется катализом. Во многих случаях катализаторы образуют с одним из реагирующих веществ промежуточное соединение, которое реагирует с другим исходным веществом, в результате получается продукт и высвобождается катализатор.

Иногда употребляют отрицательные катализаторы – ингибиторы, которые, наоборот, замедляют нежелательные химические реакции (например, коррозию металлов).

3. Температура. Для газовых реакций известно, что при повышении температуры на десять градусов Т = 10 К или Δt = 10 °C) скорость реакции возрастает в 2–4 раза (правило Вант‑Гоффа). Для скорости реакции ν2 и ν1 при значениях температуры t2 и t1 имеем:

 

 

ν2 = ν1 γ0,1(t2‑t1),

 

где γ – температурный коэффициент скорости реакции, γ = 2–4.

Для реакций в растворах скорость также увеличивается с ростом температуры и часто в той же мере, как и для газовых реакций.

При повышении температуры возрастает число активных молекул, т. е. таких молекул, которые в момент столкновения обладают большей энергией и могут образовать продукты.

Как показывают исследования, активных молекул в реакционной среде при обычных условиях очень мало. Иначе все реакции между газами протекали бы мгновенно, и в воздухе не было бы, например, свободного кислорода, необходимого для дыхания. Реакции между газами при обычных условиях практически не идут (встречаются исключения, например, при 20 °C полностью протекает реакция 2NO + O2 = 2NO2).

4. Концентрация реагентов. Чтобы произошло взаимодействие, частицы реагирующих веществ в гомогенной среде должны столкнуться. Число столкновений пропорционально числу частиц реагирующих веществ в объеме реактора, т. е. молярным концентрациям этих веществ.

Чем большие количества веществ взяты для реакции в данном объеме системы, т. е. чем выше концентрация реагентов, тем больше число столкновений частиц и тем больше скорость реакции. Зависимость скорости реакции от концентрации реагентов распространяется на газовые смеси и растворы.

Установлено, что: