Возможность выполнить задачу
По Фоггу, можно выделить шесть аспектов, влияющих на возможность человека выполнить задачу.
Время
Выше вероятность, что человек выполнит краткосрочную задачу по сравнению с долгосрочной.
Деньги
Выше вероятность, что человек выполнит задачу, не требующую серьезных финансовых затрат, чем дорогостоящую задачу.
Физические усилия
Выше вероятность, что человек выполнит задачу, требующую меньше физических усилий.
Умственные усилия
Выше вероятность, что человек выполнит задачу, не требующую серьезных умственных усилий.
Отклонение от социальных норм
Выше вероятность, что человек выполнит задачу, которая является социально приемлемой.
Рутинность
Выше вероятность, что человек выполнит рутинную задачу, чем неординарную.
Руководствуясь этими принципами, относительно просто понять, как можно снизить барьеры для принятия хороших решений. В последующем обсуждении я с помощью скобок буду выделять шесть перечисленных возможностей.
Привяжите действия к результатам
Аналитики могут облегчить процесс принятия решений (умственные усилия) для руководителей и снизить время принятия решений (время), если подберут правильную форму для презентации своих выводов и рекомендаций, отразят, почему это важно, и сфокусируются на влиянии. Да, следует представлять доказательства и рекомендации в наиболее доступной форме, чтобы для их понимания требовалось минимальное усилие. Мне нравится форма презентации, которую предложила Трейси Эллисон Олтмен. Эта форма представлена на рис. 9.7 (остальная работа Атмен тоже достойна внимания) и выделяет взаимосвязь между действием и результатом: если вы сделаете Х, то случится Y. Кроме того, она подтверждает рекомендации, следующие далее. Это и есть сделка: «купите» эти рекомендации в силу объективных причин.
Рис. 9.7. Привяжите действия к результатам. Укажите действие с привязкой к конкретному результату, а ниже представьте причинно-следственное доказательство
Источник: https://www.uglyresearch.com/datatodecision.php. Воспроизводится с разрешения
По результатам опроса компании Accenture[181], 58 % руководителей считают, что самое сложное — увидеть результаты от работы с данными: «Установление взаимосвязи между сбором данных и проведением анализа и действиями и результатами, спрогнозированными аналитиками, для многих оказывается более сложной задачей, чем сбор или интерпретация данных». Более того, как оказалось, только 39 % руководителей считают данные, которые приводят аналитики, «релевантными для бизнес-стратегии». Именно здесь каждый специалист, работающий в компании с данными, должен сыграть свою роль. Помогите включить аналитику в бизнес-процесс, сделать ее более прозрачной и понятной, более постоянной с адекватными данными и показателями. Выражайте свое несогласие, если это необходимо, но будьте готовы объективно доказать свою точку зрения.
Сотрудничество и согласие
В главе 5 я уже рассказывал, как Нейту Сильверу удалось предсказать результаты выборов в Сенат и победителей в 49 штатах из 50 в ходе предвыборной кампании 2008 года. Он сделал это, после того как ученые мужи высмеяли его, утверждая, что, благодаря своему огромному опыту в области политологии, они всё знают лучше него. Однако построение статистических моделей на основе совокупности разных опросов и мнений (а также с использованием самых последних данных, которые только можно было получить) позволило Сильверу сделать прогноз с высоким уровнем точности, в котором были усреднены различные ошибки. Как отметил Ларри Кили из Doblin Group, «хорошие идеи могут прийти от кого угодно» (цит. по книге Кевина Келли New Rules for the New Economy (Penguin Books)). В данном случае «кто угодно» — это электорат, мнение которого отражено в агрегированных данных.
Если решение сложное или непопулярное, одним из вариантов становится достижение согласия (отклонение от социальных норм). Это даст право голоса всем заинтересованным сторонам и повысит шансы на успех. «Важно, чтобы каждый ощущал себя частью процесса. Нет никакой пользы в эффективном решении, если его никто не поддерживает», — отмечает Робин Тай, исполнительный директор Ernst and Young.
В современной реальности это означает, что все сотрудники должны понимать цели, характер собираемых данных, показатели и то, как руководитель интерпретирует информацию при принятии решений. Обеспечьте сотрудникам возможность выразить свою точку зрения, если она отличается от вашей, и участвовать в процессе. При этом проанализируйте другие варианты, которые, возможно, упустил руководитель. В качестве подсказки можно воспользоваться акронимом DECIDE.
• Определите проблему (Define).
• Установите критерии (Establish).
• Рассмотрите все альтернативы (Consider).
• Выделите лучшую (Identify).
• Разработайте план действий и начните его воплощать (Develop).
• Оцените решение и при необходимости дайте обратную связь (Evaluate).
Иными словами, убедитесь, что все участники процесса согласны с этим шагами.
Конечно, у такого подхода есть свои минусы. Если в процессе принятия решения задействовано слишком много людей, это может привести к эффекту коллективного мышления, а также к размытию ответственности, что может существенно замедлить процесс принятия решения или повысить вероятность появления противоречащих друг другу позиций, что способно спровоцировать споры и разногласия. Опять-таки, здесь необходимо найти золотую середину, то, что подтверждено данными (рис. 9.8).
Рис. 9.8. Распределение ответов на вопрос «К мнению скольких сотрудников вы прислушиваетесь, принимая решения в вашей компании?»
Источник: отчет Decisive Action: how businesses make decisions and how they could do it better
Интересно, что, согласно данным отчета Decisive Action,
…в то время как топ-менеджмент компании и руководители подразделений чаще всего опираются в своих решениях на данные, вице-президенты и старшие вице-президенты (или сотрудники на эквивалентных должностях), по их собственной оценке, более склонны к совместному принятию решений. Это может быть признаком того, что руководителям этого уровня требуется заручиться более широкой поддержкой своей инициативы, что перестает быть актуальным для руководителей высшего звена.
Обучение
Повышение статистической грамотности людей, принимающих решения, — очевидный шаг для улучшения возможности предпринимать действия (умственные усилия). Конечно, проведение статистического анализа — обязанность аналитика, так что вряд ли всем руководителям нужно уметь строить сложные регрессионные модели или понимать математические основы ЕМ-алгоритма или метода опорных векторов.
Вместо этого я рекомендовал бы сосредоточиться на принципах формирования выборок и разработки экспериментов, чтобы те, кто принимает решения, могли оценить качество собранных данных и достоверность результатов тестирования, какие факторы могут повлиять на объективность данных и так далее. Кроме того, я рекомендовал бы провести обзор показателей с возможными отклонениями, такими как предел погрешности и стандартное отклонение, которые отражают воспроизводимость и уверенность в итоговых совокупных значениях.
Внимание: при попытках провести подобного рода обучение вы можете натолкнуться на сопротивление, так что, возможно, вам придется заручиться поддержкой руководителей самого высокого уровня (как это было у нас в компании Warby Parker), чтобы убедить всех заинтересованных людей пройти курс повышения квалификации, пусть даже продолжительностью всего час.
Постоянство
Выполнение задач можно сократить по времени (время) и сделать проще (умственные усилия) благодаря единообразию в презентации данных. Это не означает, что все отчеты должны выглядеть одинаково, тем не менее форма еженедельного отчета или дашборда не должна меняться со временем. Кроме того, по возможности команды должны получать одни и те же показатели.
Например, в корпорации Procter & Gamble, где дашбордами пользуются 50 тыс. сотрудников, унификация данных для всех пользователей — необходимость. На интерактивной карте, отражающей долю рынка корпорации, зеленый цвет всегда обозначает «выше рыночной доли», а красный — «ниже рыночной доли». Не стоит без необходимости смешивать показатели. Кроме того, в корпорации разработаны модели достаточности (business sufficiency models[182]), которые определяют, какие данные необходимы для работы в определенной профессиональной области. Это означает, по Томасу Дэвенпорту, что «если вас, например, интересуют вопросы цепочки поставок, модель достаточности определяет основные переменные, как они должны быть представлены визуально и (в некоторых случаях) взаимосвязи между переменными и прогнозами на основе этих взаимосвязей».
ПОБУЖДАЮЩИЕ СТИМУЛЫ
Из трех факторов по модели Фогга наличие побуждающего стимула, вероятно, наименее важно, по крайней мере, в контексте принятия деловых решений. Я говорю это, потому что решения в бизнесе обычно принимаются в более широком контексте целей, основных показателей эффективности, стратегии и совместной командной работы, где обычно присутствует реальный или установленный срок выполнения задачи. То есть если кто-то не спрашивает о решении или не ждет его, очевидно, что в процессе что-то явно не так или это не слишком важно. Конечно, сложное решение всегда можно попробовать отложить под реальным или вымышленным предлогом нехватки данных. С этим можно бороться, если установить четкий, прозрачный график проекта и распределить зоны ответственности.
Один из примеров, когда действительно есть необходимость в побуждающем стимуле, — автоматический процесс, которым «управляют» статистические модели с принципами машинного обучения. Подобные модели устаревают. Внутренние предположения, на основе которых они строились, теряют актуальность, например поведение потребителей или сотрудников (как один из движущих факторов) может измениться. Таким образом, требуется регулярно проверять эффективность этих моделей, проверять предположения и по мере необходимости вносить коррективы. При этом, когда во главу угла ставится алгоритм, управляющий процессом, люди становятся более пассивными и теряют бдительность: проявляется так называемый эффект автоматизации. Для преодоления этого эффекта нужно установить четкий график и обязанность поддерживать актуальность модели.
Заключение
Процесс принятия решений бывает непростым. Мы подвержены воздействию самых разных факторов, способных повлиять на объективность принимаемых решений. Это в том числе когнитивные искажения, проблемы с данными и корпоративной культурой компании. Помешать принимать объективные решения может предвзятое мнение или раздутое эго.
Интуиция должна стать частью процесса принятия решений на основе данных. Без нее не обойтись. В заключении своей книги Dataclysm Кристиан Раддер признает: «За каждой цифрой стоит человек, принимающий решение: что анализировать, что исключить из процесса анализа, в какую рамку поместить ту картину, которую рисуют данные. Сделать заявление, построить простейший график — означает сделать выбор, и при этом несовершенство человеческой натуры непременно даст о себе знать».
Скотт Беркен также отмечает: «Когда кто-то говорит “данные показывают”, он притворяется, что существует единственная интерпретация этих данных, но это далеко не так. Подобное ложное убеждение мешает задавать важные вопросы, например “Можно ли на основании этих же данных выстроить альтернативную и в равной степени убедительную гипотезу, ведущую к другому заключению?”»
Основное в этом процессе — начать с правильных вопросов и сконцентрироваться на вопросе и решении[183], а не на данных. Когда вы четко и недвусмысленно формулируете свою цель, у вас увеличивается вероятность правильно определить, на какие вопросы нужно ответить и, следовательно, какие данные собрать, какие тесты провести, какие показатели продвигать. Таким образом, у вас увеличивается вероятность, что полученные результаты будут соответствовать вашим показателям и целям, а принимать решения вам будет проще.
Тем не менее вы обязательно должны использовать имеющиеся в вашем распоряжении релевантные данные. Не стоит полагаться исключительно на интуицию, она слишком часто подводит. Что еще важнее — не сдавайтесь на милость HiPPO. Если вы вынуждены принять решение, идущее вразрез с данными, отдавайте себе отчет, когда и почему вы это делаете и ради какой цели, например для реализации долгосрочной стратегии (как в примере с Amazon из главы 8).
Мы рассмотрели ряд вопросов, важных на этапе принятия решения, включая данные и когнитивные аспекты. Какие из них руководители считают наиболее важными или наиболее легкодостижимыми? Двумя самыми популярными ответами были улучшение способности анализировать данные и повышение подотчетности при принятии решений (рис. 9.9). Реализовать оба этих аспекта относительно просто. Тем не менее достижимы все перечисленные факторы, хотя это и требует поддержки всех сотрудников — от специалистов по сбору данных до топ-менеджмента компании. Добиться этого возможно только в условиях соответствующей корпоративной культуры и при наличии мотивированных сотрудников с правильными стимулами. Как отметил один из комментаторов, «будучи аналитиком, я могу утверждать, что в очень многих компаниях представлять данные, противоречащие точке зрения или намерениям HiPPO, — прямой путь к увольнению и попаданию в черный список»[184]. В компании с управлением на основе данных это неприемлемо. Таким образом, мы переходим к вопросу корпоративной культуры, что и будет темой следующей главы.
Рис. 9.9. Что из перечисленного, по вашему мнению, больше всего способствовало бы улучшению процесса принятия решений в вашей компании?
Источник: на основе диаграммы 7 из отчета Decisive Action: How businesses make decisions and how they could do it better аналитического подразделения журнала Economist