Специалисты по экономическому анализу и финансовые аналитики
Специалисты, которые занимаются внутренней финансовой отчетностью, аудиторскими проверками, прогнозированием, анализом эффективности производственной деятельности и так далее. У Патрика степень бакалавра по философии, политологии и экономике, а также опыт работы в качестве специалиста по анализу рынков заемного капитала в компании RBS Securities. Сейчас он занимает позицию менеджера по розничному финансированию и стратегии в компании Warby Parker в Нью-Йорке, где отвечает за планирование и анализ финансов в розничной сети, а также разработку стратегии по открытию новых магазинов. Он проводит много времени, работая с Excel, управляя прибылями и убытками склада и ключевыми показателями результативности (KPIs), разрабатывая модели будущей деятельности, изучая отклонения в моделях и проводя анализ развития рынка. Сегодня Патрик тратит около 60 % рабочего времени на подготовку отчетов, а оставшееся время — на проведение анализа, тем не менее это соотношение увеличивается в пользу времени на аналитическую работу по мере того, как улучшается его знакомство с инструментами бизнес-аналитики в компании и повышаются навыки работы с этими инструментами.
СПЕЦИАЛИСТЫ ПО ВИЗУАЛИЗАЦИИ ДАННЫХ
Это люди с развитым чувством прекрасного, которые создают инфографику, дашборды и другие графические элементы. Кроме того, они могут заниматься написанием программного кода при помощи JavaScript, CoffeeScript, CSS и HTML и работают с библиотеками визуализации данных, такими как D3 (эффективная и красивая библиотека визуализации, описанная в книге Скотта Мюррея Interactive Data Visualization for the Web) и HTML5.
Джим (Джим В., см. рис. 4.1) получил степень магистра в области теории и практики вычислительных систем со специализацией в сфере биоинформатики и машинного обучения. Он работал в компании Garmin, где создавал графические пользовательские интерфейсы для навигационных устройств. После этого в биологическом научно-исследовательском институте он проводил анализ масштабной последовательности данных. Именно тогда он познакомился с библиотекой визуализации данных D3 и начал вести блог, посвященный этой теме, где публикует доступные и понятные руководства для пользователей. Сегодня Джим занимает пост специалиста по визуализации данных и специалиста по теории и методам анализа данных в лаборатории данных корпорации Nordstrom в Сиэтле. В своей работе он использует такие инструменты, как Ruby, Python и среду R (в частности пакеты ggplot2 и dplyr). Он обеспечивает поддержку систем персонализации и рекомендаций, а также осуществляет визуализацию данных. Основными его «клиентами» становятся сотрудники из других подразделений компании. В крупных компаниях иногда могут быть дополнительные специалисты, которые занимаются исключительно подготовкой отчетов или применением определенного инструмента бизнес-аналитики. Другие специалисты могут работать только с инструментами обработки и анализа больших данных, например Hadoop или Spark.
Рис. 4.1. Профиль команды лаборатории данных компании Nordstrom (по состоянию на 2013 год). МО = машинное обучение. DevOps — относительно новый термин, обозначающий интеграцию разработки и эксплуатации программного обеспечения
Как вы сами видите, названия специалистов, работающих с данными, как и их функции, во многом пересекаются. В основном они обрабатывают данные с помощью разных языков программирования типа SQL.
В одних случаях требуются более серьезные навыки программирования, а в других можно обойтись и без них. Нередко требуется построение статистических моделей с применением SAS или R. В большинстве случаев работа аналитика объединяет подготовку отчетов и собственно проведение анализа.
Аналитика — это командный спорт
Аналитика требует слаженной командной работы. В компании с управлением на основе данных, в которой четко налажены рабочие процессы, присутствуют как аналитики разных типов, так и сотрудники с дополняющими их навыками. При найме новых сотрудников принимается во внимание «портфолио» совокупных навыков всей команды, чтобы найти таких потенциальных кандидатов, которые «закроют» и усилят проблемные области.
Например, на рис. 4.1 приведен профиль команды лаборатории по работе с данными компании Nordstrom в 2013 году. Легко можно определить сильнейших математиков и статистиков в команде (Элисса, Марк и Эрин), сильнейших разработчиков (Дэвид и Джейсон В.), а также специалиста по визуализации данных (Джим В., о котором шла речь ранее). Я поинтересовался у директора лаборатории Джейсона Гоуэнса, что он думает насчет расширения команды, на что он ответил: «Во-первых, мы придерживаемся «правила двух пицц» Джеффа Безоса[54], а потому количество членов нашей команды вряд ли сильно изменится. Мы уверены, что такой подход помогает нам сконцентрироваться на том, что нам кажется серьезными возможностями. Во-вторых, каждый член команды привносит в нее что-то уникальное, что помогает расти всем остальным».
Еще в момент формирования команды они поступили весьма мудро, наняв сильного специалиста по визуализации данных, хотя многие другие команды делают этот шаг гораздо позже. Наличие красиво оформленных и подтвержденных концепций, основанных на данных, помогло команде лаборатории утвердить свой авторитет в рамках всей компании. «Джим очень помог нам вызвать интерес к нашей работе у остальных сотрудников, с помощью своих навыков визуализации данных он буквально вдохнул жизнь в то, что мы делаем», — говорит Джейсон.
Как уже отмечалось, профессиональные знания и навыки специалистов по теории и методам анализа данных, которые часто приходят в коммерческий сектор из академической среды, условно можно изобразить в виде буквы «Т». А если у эксперта две основные области специализации — то в виде числа пи (π). Найм новых сотрудников и формирование команд можно назвать «аналитическим тетрисом».
В 2012 году Харрис и др.[55] провели опрос среди нескольких сотен специалистов по работе с данными и разделили их на пять групп по ключевому навыку, как они сами себя охарактеризовали:
• бизнес;
• математика / анализ операций;
• машинное обучение / большие данные;
• программирование;
• статистика.
Они выделили четыре кластера ролей.
Предприниматели
Специалисты по работе с данными, у которых лучше всего развиты навыки, связанные с ведением бизнеса (форма буквы «Т»), и в меньшей степени развиты остальные навыки.
Исследователи
Специалисты, у которых лучше всего развиты навыки по работе со статистикой и в меньшей степени — навыки в области машинного обучения / больших данных, бизнеса и программирования.
Разработчики
Эксперты с двумя областями специализации (форма числа Пи) — с сильными навыками в сфере программирования и машинного обучения / больших данных и умеренными навыками по трем оставшимся категориям.
Творческие специалисты
Специалисты, «которые в среднем не считаются ни самыми сильными, ни самыми слабыми ни в одной из групп по ключевому навыку».
Профили этих четырех ролей представлены на рис. 4.2. Легко отметить широкое разнообразие среди этих четырех типов.
Рис. 4.2. Профиль навыков четырех кластеров респондентов
Источник: Харрис и др., 2013, рис. 3.3
Эти четыре роли примерно соответствуют названиям позиций специалистов по работе с данными (табл. 4.1). В более крупных и сложно организованных компаниях можно выделить больше ролей, в компаниях малого бизнеса, вероятно, меньшее количество специалистов будет выполнять более широкие функции. Кроме того, стоит отметить, что, хотя Харрис и др. назвали творческих специалистов «ни самыми сильными, ни самыми слабыми ни в одной из групп по ключевому навыку», они не выделили при этом визуализацию и коммуникацию в отдельную категорию по ключевому навыку, хотя это чрезвычайно важные навыки для команды. Проблема с данными также заключается в слабости опросов: они ограничены теми категориями, которые изначально предлагают авторы исследования. В данном случае было важно понять, что творческие специалисты — часть успешных команд, но нет ясности относительно их вклада в общий успех.
Таблица 4.1. Соответствие аналитических ролей, перечисленных ранее в этой главе, и ролей, выделенных Харрисом и др. (2013)
В идеале при найме новых сотрудников руководителю следует принять во внимание три уровня.
Индивидуальный
Насколько подходит кандидат? Обладает ли он нужными навыками, потенциалом и стремлением, которые ищет компания?
Командный
Насколько кандидат впишется в команду и сможет ли закрыть слабые места?
Рабочий
Насколько профиль команды соответствует поставленным перед ней задачам? То есть каким должен быть профиль команды, чтобы она оптимально выполняла поставленные перед ней задачи? Например, если задача главным образом состоит в разработке финансовых прогнозных моделей, то состав команды будет отличаться от того, который требуется, если задача заключается в оптимизации процесса обслуживания клиентов.
Навыки и качества
Какие качества определяют хорошего аналитика?[56]
Аналитический склад ума
Он не обязательно должен иметь научную степень по математике или статистике, но его не должна пугать, по крайней мере, описательная статистика (медиана, мода, квартиль и так далее, см. главу 5), и он должен быть готов обучаться.
Внимание к деталям и методичность
Если эти цифры, отчеты и результаты анализа попадают на стол к руководителю и влияют на принятие бизнес-решений, лучше, если они будут правильными. И лучше, если аналитик всегда будет придерживаться правила «семь раз отмерь, один отрежь».
Рациональный скептицизм
Хороший аналитик интуитивно понимает, когда что-то не так с сырыми или агрегированными данными или результатами анализа. Во-первых, он прогнозирует, какие значения были бы более вероятны. Во-вторых, ставит под сомнение качество данных, еще раз проверяет их источник и расчеты, когда показатели отклоняются от ожидаемых.
Уверенность в себе
Аналитик презентует результаты своей работы коллегам (руководителям). Если эти результаты неожиданные или отражают неэффективность в каких-то аспектах деятельности, коллеги могут поставить их под вопрос, а потому аналитик должен обладать уверенностью в себе, чтобы отстаивать свою точку зрения.
Любопытство
Частично задача аналитика состоит в том, чтобы извлекать из информации полезные для бизнеса уроки и выводы, так что он постоянно должен проявлять любопытство, выдвигая разные гипотезы и тестируя интересные аспекты данных.
Навыки общения и повествования
Работа аналитика теряет всякий смысл, если ее результаты не передаются людям, принимающим решения, которые способны ими воспользоваться. Аналитику необходимо уметь рассказать увлекательную и связную историю на основе данных и результатов анализа. Для этого он должен обладать навыками визуализации данных и уметь убедительно формулировать свои мысли в устной и письменной форме (подробнее об этом в главе 7).
Терпение
Многие факторы находятся вне зоны контроля аналитика, в том числе точность или доступность источника данных, утерянные данные, меняющиеся требования, скрытая необъективность в данных, которая становится очевидной только после выполнения анализа и приводит к необходимости переделывать все заново. Без терпения здесь не обойтись.
Любовь к данным
Точно так же, как многим программистам просто нравится процесс написания кода, некоторым людям информация нравится как ресурс, благодаря которому им удается понять окружающий их мир и оказать на него влияние. Им просто нравится пытаться во всем разобраться досконально. Нанимайте таких людей.
Стремление учиться
Это качество присуще не только аналитикам. Успеха добиваются те, кто стремится узнавать новое, следит за новостями в своей профессиональной области, учится, чтобы совершенствовать свои знания и навыки.
Прагматизм и деловой подход
Аналитик должен уметь концентрироваться на правильных вопросах. Иногда бывает трудно удержаться, чтобы не свалиться в «кроличью нору» и не потратить кучу времени на изучение отдельного пограничного случая, который не окажет никакого влияния на бизнес. Подобно хорошему редактору, аналитик всегда должен держать в голове общую картину и точно знать, в какой момент нужно остановиться и переключиться на что-то другое, чтобы более эффективно потратить свое время.
Я спросил у Дэниела Танкеланга, отвечающего за качество поиска в социальной сети LinkedIn, чем он руководствуется при найме на работу аналитиков. Он ответил:
По моему мнению, аналитику необходимы три качества. Во-первых, он должен быть умным, способным неординарно решать задачи и не только обладать аналитическими навыками, но и знать, как и когда их применять. Во-вторых, он должен быть не просто теоретиком, а демонстрировать, что у него есть и способность, и горячее желание реализовывать свои решения на практике посредством подходящих инструментов. В-третьих, у него должно быть понимание того продукта, с которым он работает, основанное на опыте или интуиции, он должен уверенно ориентироваться в этой области и ее проблемах, и он должен задавать правильные вопросы.
Кен Рудин, глава аналитики социальной сети Facebook, уверен[57]:
С помощью науки, технологий и статистики можно найти ответы, но по-прежнему большим искусством остается умение задавать правильные вопросы… Сегодня недостаточно нанимать людей с научной степенью в области статистики. Нужно быть уверенным, что у этих людей есть деловая хватка. Мне кажется, деловой подход становится самым важным активом и критическим навыком, которым должен обладать каждый аналитик.
Как понять, есть ли у кандидата на позицию аналитика это качество? В ходе собеседования не концентрируйтесь только на том, как рассчитать тот или иной показатель. Предложите потенциальному сотруднику практический случай из вашего бизнеса и спросите, на какие показатели он бы обратил внимание в этом конкретном случае. Вам все будет ясно из его ответа.
Еще один инструмент
С точки зрения практических навыков, без всяких сомнений, большинство аналитиков во всем мире использует в своей работе Microsoft Word, Excel и PowerPoint в качестве основных инструментов. Они доказали свою эффективность. Тем не менее поразительно, как может сказаться на продуктивности применение нескольких дополнительных инструментов.
Далее мы рекомендуем вам бросить вызов. Если вы аналитик, бросьте вывоз самому себе: в течение следующего месяца или квартала освойте еще один инструмент или программу. Если вы руководите аналитиками, поставьте перед ними такую задачу. Попробуйте и увидите, какой будет результат. Вы будете удивлены.
Стоит обратить внимание на следующие аспекты.