Производные элементарных функций
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.
Итак, производные элементарных функций:
Название | Функция | Производная |
Константа | f(x) = C, C ∈ R | f /(x) = 0 (да-да, ноль!) |
Степень с рациональным показателем | f(x) = x n | f /(x) = n · x n − 1 |
Синус | f(x) = sin x | f /(x) = cos x |
Косинус | f(x) = cos x | f /(x) = − sin x (минус синус) |
Тангенс | f(x) = tg x | f /(x) = 1/cos2 x |
Котангенс | f(x) = ctg x | f /(x) = − 1/sin2 x |
Натуральный логарифм | f(x) = ln x | f /(x) = 1/x |
Произвольный логарифм | f(x) = log a x | f /(x) = 1/(x · ln a) |
Показательная функция | f(x) = e x | f /(x) = e x (ничего не изменилось) |
Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:
(C · f)’ = C · f ’.
В общем, константы можно выносить за знак производной. Например:
(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2.
Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.
Производная суммы и разности
Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:
1. (f + g)’ = f ’ + g ’
2. (f − g)’ = f ’ − g ’
Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.
Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.
Задача. Найти производные функций: f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.
Функция f(x) — это сумма двух элементарных функций, поэтому:
f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x + cos x;
Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):
g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 =
=4x · (x 2 + 1).
Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x 2 + 1).