Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f(x) = C, CR f /(x) = 0 (да-да, ноль!)
Степень с рациональным показателем f(x) = x n f /(x) = n · x n − 1
Синус f(x) = sin x f /(x) = cos x
Косинус f(x) = cos x f /(x) = − sin x (минус синус)
Тангенс f(x) = tg x f /(x) = 1/cos2 x
Котангенс f(x) = ctg x f /(x) = − 1/sin2 x
Натуральный логарифм f(x) = ln x f /(x) = 1/x
Произвольный логарифм f(x) = log a x f /(x) = 1/(x · ln a)
Показательная функция f(x) = e x f /(x) = e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f)’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2.

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

1. (f + g)’ = f ’ + g

2. (fg)’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность fg можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.

 

Задача. Найти производные функций: f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Функция f(x) — это сумма двух элементарных функций, поэтому:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x + cos x;

Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 =

=4x · (x 2 + 1).

Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x 2 + 1).