Занятие 7. Большие интегральные схемы
Учебные, методические и воспитательные цели:
1. Изучить проблемы повышения степени интеграции, базовые матричные кристаллы.
2. Совершенствовать умение выделять главное для качественного конспектирования учебного материала.
3. Развивать инженерное мышление, формировать научное мировоззрение.
Время: 2 часа
План лекции:
№ п/п | Учебные вопросы | Время мин. |
1. 2. 3. | ВВОДНАЯ ЧАСТЬ ОСНОВНАЯ ЧАСТЬ 1. Проблемы повышения степени интеграции. 2. Базовые матричные кристаллы. ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ | 5 80 60 20 5 |
Материальное обеспечение:
1. Набор БИС.
Литература:
1. К.С. Петров "Радиоматериалы, радиокомпоненты и электроника", с.431-433.
2. И.П.Степаненко, "Основы микроэлектроники", с.453-460.
3. В.А.Батушев, "ЭЭВТС", с.308-314.
Вводная часть
Тенденция к повышению степени интеграции наблюдалась с самого зарождения микроэлектроники. Сначала в каждом корпусе размещались отдельные интегральные логические элементы. Затем, увеличив количество выводов, стали размещать несколько интегральных логических элементов в одном корпусе. Это позволило сократить общее количество корпусов в аппаратуре, но не привело к какому-либо новому этапу в развитии ИС. Качественно новый этап начался лишь после того, как простые ИС, расположенные на одном кристалле, стали объединять в сложные функциональные комплексы путем металлической разводки – так же, как в самих ИС объединяются отдельные элементы. На этом этапе появились сначала средние, а затем большие интегральные схемы и сверхбольшие интегральные схемы. Можно сказать, что в основе БИС лежит интеграция простых ИС.
Использование БИС сопровождается резким улучшением всех основных показателей по сравнению с аналогичным функциональным комплексом, выполненных на отдельных ИС. Действительно, интеграция ИС на одном кристалле приводит к уменьшению количества корпусов, числа сборочных и монтажных операций, количества внешних – наименее надежных – соединений. Все это способствует уменьшению размеров, массы, стоимости и повышению надежности. Но при этом возникает ряд проблем, которые будут рассмотрены ниже.
ОСНОВНАЯ ЧАСТЬ
1. Проблемы повышения степени интеграции
Опыт разработки больших интегральных схем (БИС) выявил ряд общих проблем, которые ограничивают повышение степени интеграции и которые, следовательно, нужно так или иначе решать в процессе дальнейшего развития микроэлектроники.
Проблема теплоотвода. При заданных размерах элементов повышение степени интеграции может достигаться увеличением плотности компоновки, т.е. сближением элементов на кристалле. При этом неизбежно возрастает удельная мощность, рассеиваемая на единице площади. При современных конструкциях кремниевых ИС допустимая удельная мощность на кристалле без дополнительного теплоотвода не превышает 5 Вт/см2. Значит, допустимая мощность для кристалла площадью 20 мм2 составляет не более 1 Вт. При средней мощности 0,5 мВт, потребляемой одним интегральным логическим элементом, на указанном кристалле удастся разместить не более 2000 логических элементов.
Естественным путем для преодоления этого ограничения является использование микрорежима транзисторов и таких схем, которым микрорежим свойствен. Например, для того чтобы на той же площади 20 мм2 разместить 10000 логических элементов нужно использовать элементы с потребляемой мощностью не более 0,1 мВт, т.е. на комплементарных транзисторах.
Конечно, может оказаться, что при данных размерах кристалла желательную степень интеграции нельзя осуществить ни на одном их имеющихся элементных базисов. Тогда приходится идти на увеличение площади ИС. В принципе этот путь открывает широкие возможности, но практически он тоже ограничен.
Ограничение накладывается неизбежными нарушениями структуры полупроводника на поверхности. А это будет означать негодность транзистора или отдельной интегральной схемы, соответственно негодной может оказаться и БИС в целом. Поэтому увеличение площади кристалла сопровождается увеличением процента брака и уменьшением процента выхода годных БИС.
Проблема межсоединений. Внутренняя структура БИС настолько сложна, что конструктор не может за разумное время спроектировать топологию (расположение ) элементов и рисунок оптимальных межсоединений. Для этого нужно сравнить тысячи вариантов, и это практически можно выполнить только при использовании систем автоматического проектирования.
Опыт показывает, что в большинстве БИС не удается расположить разводку межсоединений в одной плоскости без пересечений. Поэтому для БИС характерна многослойная разводка, расположенная обычно в двух или трех плоскостях. Изоляция слоев друг от друга и необходимые соединения между разводками разных слоев представляют собой особую технологическую проблему, специфичную для БИС.
Проблема контроля параметров. Электрический контроль параметров БИС до ее помещения в корпус осуществляется с помощью электрических зондов, прижимаемых к контактным площадкам, т.е. к будущим внешним выводам. Зонды представляют собой тонкие металлические проволочки, острие которых имеет диаметр 5-10 мкм. Зонды объединяются в зондовые головки – своего рода проволочные "щетки", в которых каждый зонд соприкасается с соответствующей контактной площадкой, имеющей размеры 100´100 мкм. Количество внешних выводов у БИС значительно больше, чем у простых ИС, в силу большей сложности выполняемых функций. Оно может составлять от десятков до нескольких сотен. Если для иллюстрации принять 50 выводов и учесть, что на каждом выводе может быть два значения выходной величины (0 или 1), то для полноценной проверки функционирования БИС (только в статике) потребуется »1015 измерений. При длительности каждого измерения 1мкс контроль одной БИС займет около 25 лет.
Следовательно, помимо автоматизации контроля, нужно упростить и его методику. По необходимости измерения должны быть выборочными: количество измерений, свидетельствующих о работоспособности БИС (с определенной вероятностью), обычно лежит в пределах 200-300.
Отбор контролируемых параметров, последовательность и правила (алгоритмы) их испытания, а также разработка соответствующей аппаратуры и программ (для использования ЭВМ) представляют нередко задачу, не менее сложную, чем проектирование самой БИС.
Физические ограничения на размеры элементов. В современных БИС размеры отдельных участков доходят до 2-5 мкм и имеется тенденция к дальнейшему уменьшению размеров. На этом пути, однако, возникают некоторые принципиальные ограничения.
Во-первых, с уменьшением площади начинает сказываться неравномерное распределение примеси в полупроводнике. Анализ показывает, что этот фактор становится существенным при размерах элементов менее 1мкм.
Во-вторых, с уменьшением линейных размеров возрастает роль технологических допусков. Так, если погрешность фотолитографии составляет ±0,2мкм, то при линейных размерах 5 мкм площади элементов будут различаться незначительно (на 20%), а при размерах 1 мкм – в 2,3 раза.
В-третьих, с уменьшением линейных размеров возрастают напряженности электрических полей в полупроводниковых слоях. При одном и том же напряжении U=0,2В напряженность поля в слое толщиной 5мкм сравнительно невелика (400В/см), а в слое толщиной 0,2мкм она составляет 104В/см, т.е. превышает критическую напряженность. Соответственно полупроводниковый слой приобретает нелинейные свойства.
Таким образом, учитывая, что возможности обычной фотолитографии тоже лежат в пределах 0,7-1мкм, можно сказать что и физические и технологические аспекты делают область размеров менее 1мкм особой областью и позволяют говорить о "субмикронной микроэлектронике" как о самостоятельном научно-техническом и технологическом направлении.
2. Базовые матричные кристаллы
Наиболее успешно задача разработки специализированной элементной базы решается с помощью матричных БИС (МаБИС).
В основе подобных БИС лежит специальная заготовка – базовый матричный кристалл (БМК), который представляет собой прямоугольную пластину определенного размера из монокристаллического полупроводникового материала, на которой размещена матрица нескоммутированных базовых ячеек. Каждая ячейка состоит из нескоммутированных транзисторов, диодов, резисторов. Соединения в БИС можно представить в виде многоуровневой системы. На первом уровне реализуются связи между отдельными элементами, образующими простейшие логические схемы. На втором уровне соединяют схемы типа триггеры, полусумматоры и т. д.. На третьем уровне формируют связи в регистрах, сумматорах и т. п.. Таким образом, БИС, реализованные на одинаковых БМК, отличаются только слоями коммутации, при построении которых (настройке БМК) решаются две задачи: формируются библиотечные логические элементы (для каждого из них может использоваться одна или несколько соседних групп транзисторов) и строится индивидуальная система внутрисхемных связей.
Сложность проектирования матричных БИС в основном проявляется при решении задач синтеза и контроля их топологии, включающих начальное размещение элементов БИС на БМК, оптимизацию размещения, предварительную трассировку соединений, окончательную трассировку соединений, контроль конструкторско-технологических ограничений, проверку соответствия топологии и принципиальной электрической схемы БИС, схемотехнических ограничений. Трудность решения этих задач связана с необходимостью их формального математического описания, сложностью выбора критериев структурной и параметрической оптимизации.
Все межсоединения на БМК делают в слоях металлизации. В качестве дополнительного коммутационного слоя иногда используют шины поликремния.
Набор логических элементов, каждый из которых реализуется на базе одной или нескольких ячеек матрицы с помощью тех же слоев металлизации, определяют заранее при конструировании БМК и в дальнейшем не меняют.
Таким образом, чтобы разработать БИС на основе БМК достаточно спроектировать и изготовить межсодинения. Созданную таким способом БИС называют матричной БИС.
Различие в требованиях, которые предъявляются к микроэлектронной аппаратуре в соответствии с областью ее применения, обусловливает многообразие типов БМК. Существующие БМК можно условно разделить на четыре группы: 1) КМОП-цифровые матрицы; 2)биполярные цифровые матрицы; 3) аналоговые; 4) аналого-цифровые матрицы.
Выбор конкретного типа БМК определяется требованиями совместимости реализуемого устройства с остальными частями микроэлектронной системы, а также такими характеристиками, как быстродействие, энергопотребление, степень интеграции. Эти характеристики зависят от технологии изготовления БМК. Так, матрицы на эмиттерно-связанной логике отличаются наивысшим быстродействием, но при этом потребляют наибольшую мощность. БМК, изготовленные по интегральной инжекционной технологии, наоборот, позволяют уменьшить энергопотребление, но обладают низким быстродействием. Промежуточное положение занимают БМК на основе транзисторно-транзисторной логики и транзисторно-транзисторной логике с диодами Шоттки. Особое место принадлежит КМОП БМК, сочетающим наибольшую степень интеграции и низкий уровень потребления энергии. Кроме того, благодаря уменьшению линейных размеров полупроводниковых структур (длина затвора современного полевого транзистора может быть меньше 1 мкм) БИС на основе КМОП БМК в ряде случаев достигают быстродействия схем на эмиттерно-связанной логике.
Дальнейшее совершенствование КМОП базовых матричных кристаллов идет по пути увеличения степени интеграции и повышения быстродействия. Основным препятствием на этом пути является необходимость сохранения места для коммутации, достаточного для трассировки соединений при высокой (до 80%) плотности заполнения матрицы ячеек БМК. Поэтому уменьшение резервируемой для реализации межсоединений площади кристалла добиваются прежде всего за счет усовершенствования конструкции БМК. Наряду с уменьшением ширины проводников увеличивается число слоев коммутации.
Таким образом, проблема проектирования БИС на БМК очень сложна и может быть успешно решена только с использованием системы автоматизированного проектирования, так как требуется учесть очень большое количество факторов.
ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ
В данной лекции были рассмотрены проблемы, возникающие при повышении степени интеграции, при проектировании больших интегральных схем, Частично рассмотрено, как эти проблемы могут быть решены с помощью матричных БИС. Дальнейшее развитие данные вопросы получат при изучении дисциплины “Вычислительная техника и информационные технологии”
Задание на самостоятельную подготовку:
1. Изучить материал по учебнику (Л1) стр. 431-433.
Старший преподаватель кафедры N9
доцент п/п Г. Подлеский
Рецензент:
Доцент п/п
Б. Степанов