Геометрический алгоритм Монте-Карло интегрирования
Рисунок 3. Численное интегрирование функции методом Монте-Карло
Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:
- ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого Spar можно легко вычислить;
- «набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек (N штук), координаты которых будем выбирать случайным образом;
- определим число точек (K штук), которые попадут под график функции;
- площадь области, ограниченной функцией и осями координат, S даётся выражением
Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.
Использование выборки по значимости
При том же количестве случайных точек, точность вычислений можно увеличить, приблизив ограничивающую искомую функцию область к самой функции. Для этого необходимо использовать случайные величины с распределением, форма которого максимально близка к форме интегрируемой функции. На этом основан один из методов улучшения сходимости в вычислениях методом Монте-Карло: выборка по значимости.
Оптимизация
Применение в физике
Компьютерное моделирование играет в современной физике важную роль и метод Монте-Карло является одним из самых распространённых во многих областях от квантовой физики до физики твёрдого тела, физики плазмы и астрофизики.
Алгоритм Метрополиса
Традиционно метод Монте-Карло применялся для определения различных физических параметров систем, находящихся в состоянии термодинамического равновесия. Предположим имеется набор W(S) возможных состояний физической системы S. Для определения среднего значения некоторой величины A необходимо рассчитать
, где суммирование производится по всем состояниям S из W(S), P(S) — вероятность состояния S.
Динамическая (кинетическая) формулировка