3. Неповні диференціальні рівняння.

 

1. Диференціальним рівнянням першого порядку називається рівняння, яке містить незалежну змінну х , невідому функцію у = у (х) та її похідну у’:

або

Враховуючи, що диференціальне рівняння можна записати в диференціалах:

Порядок диференціального рівняння визначається по порядку старшої похідної цього рівняння:

- ІІІ порядку.

Розв’язком диференціального рівняння на деякому інтервалі (а; b) називається диференційована на цьому інтервалі функція , яка при підстановці в диференціальне рівняння обертає його в тотожність.

Графік розв’язку диференціального рівняння називається інтегральною кривою цього рівняння.

2. Теорема Коші (про існування і єдиність розв’язку)

Дано диференціальне рівняння . Нехай функція і її частинна похідна визначені і неперервні в деякій області D і нехай точка . Тоді існує єдиний розв’язок рівняння , який задовольняє умову при .

Геометрично теорема Коші стверджує, що через кожну точку області D проходить єдина інтегральна крива.

Умову при або або називають початковою умовою розв’язку.

Умови існування і неперервності і в області D називають умовами теореми Коші.

 

Зауваження: Точки області D, в яких не виконуються умови теореми Коші називаються особливими. Через кожну з таких точок проходить кілька інтегральних кривих або не проходить жодної.

Задача знаходження розв’язку диференціального рівняння при початкових умовах називається задачею Коші.

Загальним розв’язком рівняння називається функція , яка залежить від змінної і довільної сталої С.

Геометрично загальний розв’язок визначає сім’ю інтегральних кривих.

 

у

с1

с2

с=с0

с1

 

0 х

 

 

Частинним розв’язком рівняння називається функція , яка знаходиться із загального розв’язку пр певному значенні сталої с=с0 .

С0 знаходиться, використовуючи початкові умови.

Геометрично частинний розв’язок визначає одну криву із сім’ї інтегральних кривих, яка проходить через точку і для якої с=с0 .

Загальний розв’язок називають загальним інтегралом диференціального рівняння.

 

Завдання додому.

1) Конспект; [1] с. 421 - 451;

[2] с. 325 – 339.

Питання для самоконтролю

1.Основні означення.

2. Задача Коші.

3. Неповні диференціальні рівняння.

Л Е К Ц І Я 28

 

Тема: Диференціальні рівняння першого порядку.

Мета: ознайомити з методами відокремлювання змінних, розв‘язку лінійних диференціальних рівнянь першого порядку.

Література: [1, с. 427-438]; [6, с. 438-443].

П Л А Н

1. Диференціальні рівняння з відокремлюваними змінними.