Геометричний зміст диференціала

Диференціал визначає приріст ординати дотичної, яка проведена в точці х0 до графіка функції у= f(x).

 

7. Інваріантність форми диференціала – незмінність: перший диференціал функції у= f(x) визначається за однією і тією самою формулою незалежно від того, чи змінна х є незалежною змінною, чи вона є функцією іншої змінної.

 

 

 

8. Диференціал функції застосовується в наближених обчисленнях.

 

Завдання додому

 

1. Конспект, підготовка до практичного заняття

[1] с. 191-222

[2] с. 176-194

 

2. Самостійна робота №8 “Задача про неперервне нарахування відсотків”

(2 год.) [2] с. 159-161

 

3. Самостійна робота №9 “Поняття про еластичність функції”

(2 год.) [2] с. 196-198

 

Питання для самоконтролю

1. Неперервність функції у=f (x).

2. Похідна функції. Геометричний та економічний зміст.

3. Основні правила диференціювання.

4. Таблиця похідних.

5. Похідна складної функції.

6. Означення диференціала та його зміст.

7. Інваріантність форми диференціала.

8. Застосування диференціала в наближених обчисленнях.

Л Е К Ц І Я 15

 

Тема: Дослідження функцій. Побудова графіків.

Мета: сформувати поняття екстремума функції, опуклості і вгнутості кривих, асимптоти кривої, ознайомити з схемою дослідження функції та побудовою графіка.

Література: [1, с. 246-266]; [6, с.249-254].

П Л А Н

1. Екстремум функції.

2. Опуклість і вгнутість кривих.

3. Асимптоти кривої.

4. Схема дослідження функції та побудова графіка.

5 Видача індивідуального завдання.

 

1. Границя відношення двох функцій (у випадках невизначеності виду і при або ) дорівнює границі відношення похідних цих функцій.

(або ) (або )

Правило Лопіталя використовується з застосуванням особливих границь і властивостей границь.

 

Приклад:

=

 

2. Розглянемо функцію у= f (x), .

1) Функція називається зростаючою, якщо при х2 > х1 f (x2) > f (x1).

y

 

f (x1) f (x2)

0 x1 x2 x

 

2) Функція називається спадною, якщо при x1 > x2 f (x2) < f (x1).

 

y

     
 

f (x1)

f (x2)

0 x1 x2 x

 

Функція, яка або тільки зростає, або тільки спадає на деякому інтервалі, називається монотонною на цьому інтервалі.