Урок коррекции и закрепления новых знаний может иметь приблизительно такую структуру.

1. Организация учащихся класса. 2. Проверка домашнего зада­ния, 3. Устный счет. 4. Актуализация опорных знаний и умений. 5. Коррекция и закрепление стержневых знаний и умений. 6. Выработка умений применять знания по образцу в сходных ситуа­циях. 7. Выработка умений переносить стержневые знания в новые условия. 8. Тренировочные упражнения. 9. Домашнее зада­ние. 10. Повторение ранее пройденных знаний. 11. Итог урока.

3. Уроки выработки практических умений (применение знаний в новой ситуации)

Основная дидактическая цель этих уроков направлена на кор­рекцию и закрепление знаний, выработку умений и применение знаний и умений в новых условиях. Из-за неоднородности состава учащихся каждого класса, различных возможностей в усвоении ими математических знаний уровень закрепления знаний и форми-

74

рования умений на одном и том же уроке у разных учеников различен. В этом случае требуется дифференцированный подход к учащимся с учетом их индивидуальных особенностей. На уроках закрепления знаний большое место отводится упражнениям в за-креплении нумерации, устным вычислениям, решению задач и примеров, выполнению измерительных и чертежных работ и др.

Эффективность разных видов упражнений зависит от содержа-ния материала, а также от характера заданий, предлагаемых уче-никам. Важно правильно распределить упражнения, которые вы-полняются под руководством учителя и самостоятельно. Кроме того, необходимо соблюдать правильное соотношение между уп-ражнениями обучающими и тренировочными.

На первых уроках выработки практических умений большинст-

во упражнений носит обучающий характер, они проводятся под руководством учителя. Однако степень вмешательства учителя в практическую деятельность учащихся будет определяться индиви-дуальными способностями ученика при усвоении знаний. На по-следующих уроках все большее место должны занимать самостоя-тельные работы, выполнение упражнений творческого характера, имеющих развивающее, корригирующее значение, упражнений, в которых учащиеся получали бы навыки самоконтроля. Например,

по примеру на сложение составить три примера — один на сло­жение и два на вычитание:

4+3 = 7

3+4=7 7-4=3

7-3=4

Выполнить действия 375 : 4, 43*8 с проверкой. Вставить пропущенную цифру: 3[ ] * 5= 165. Изменить вопрос в задаче так, чтобы она решалась не одним, а двумя действиями. Придумать пример с заданным ответом. Придумать пример оп-ределенного вида (на деление с остатком, пример, к решению которого удобно применить прием округления, перестановки со-множителей и т. д.).

Уроки выработки практических умений разнообразны по структуре. В состав таких уроков могут входить следующие этапы: 1. Организация класса. 2. Проверка домашнего задания. 3. Упражнения в устном счете. 4. Воспроизведение и коррекция умений для решения задач в новых ситуациях. 5. Подготовка к комплексному применению знаний, умений. 6. Самостоятельная

75

работа по комплексному применению знаний, умений на репродук-тивном, а затем и продуктивном уровне. 7. Обобщение и система-тизация знаний и способов выполнения деятельности. 8. Повторе-ние ранее полученных знаний. 9. Задание на дом. 10. Итог урока

4. Уроки повторения обобщения и систематизация знаний (усвоение способов действий в комплексе)

Повторение пройденного имеет целью углубить, обобщить и систематизировать материал, связать его с жизнью и практичес-кой деятельностью учащихся, использовать знания в новых ситуа-циях. Повторение в процессе обучения математике проводится на разных этапах: в начале учебного года после изучения определенной темы, раздела, в конце четверти и в конце учебного года. Целью таких уроков повторения, которые проводятся в начале учебного года, является восстановление знаний учащихся за прошлый учеб-ный год, их систематизация и постепенная связь с новым учебным материалом. Уроки повторения после изучения темы или раздела имеют целью углубить знания, усиленно фиксировать внимание уча­щихся на существенных признаках чисел, действий, геометрических форм, понятий и т. д., сопоставлять сравнивать сходные и контраст­ные понятия, действия, выработать у учащихся обобщенные способы действий, т. е. способы действий в комплексе.