4. Назови главный вопрос задачи. Объясни, что нужно узнать] в задаче.

5. Запиши задачу кратко или сделай чертеж.

6. Повтори задачу по краткой записи. .

7. Можно ли сразу ответить на главный вопрос задачи? Каких
данных не хватает, чтобы ответить на этот вопрос сразу?

8. Что можно узнать сначала? Каким действием? Что можно
узнать потом?

9. Составь план решения и наметь действия. Выполни решение.

10. Проверь решение и запиши ответ задачи.

Работе по этим карточкам-заданиям учащихся следует учить. Сначала учитель сам читает каждый пункт задания в отдельности и учит отвечать учащихся на вопросы каждого пункта. Учащиеся повторяют за учителем ход рассуждения. Затем пункты задания читает один из учеников, а остальные должны быть готовы под руководством учителя провести рассуждения вслух. Далее ученик, вызванный к доске для решения задачи, читает пункт задания про себя, а вслух ведет рассуждения. Учитель оказывает ему помощь. К ответу этого ученика привлекаются и остальные учащиеся клас­са. Наконец, ученики читают задания про себя, а при комменти­ровании действий получают меньшую помощь учителя. В этот период некоторые учащиеся уже могут самостоятельно решать задачу, все меньше прибегая к карточке, т. е. можно считать, что они усвоили всю систему работы над задачей.

Часть учащихся еще длительное время пользуется этими кар­точками, но и у них постепенно формируются навыки самостоя-380

тельной работы над задачей. В классе всегда имеются один или несколько учеников, которым необходима помощь учителя. Эти ученики не овладевают навыками самостоятельной работы над задачей, и им приходится оказывать помощь наводящими вопроса­ми и при записи содержания задачи, и при составлении плана и выбора действий.

Работа с карточками-заданиями используется широко и при ознакомлении учащихся с решением задачи нового вида. Когда учащиеся постепенно начнут усваивать решение задачи данного вида, карточки-задания следует использовать частично, т. е. не вести подробных рассуждений. Иногда ученику достаточно прочи­тать задачу, и ход решения ему становится ясен. Другим ход решения становится доступным после изображения содержания задачи в краткой форме записи. Для какой-то части учащихся дополнительно к этому нужно поставить один-два наводящих во­проса. В каждом отдельном случае учитель должен подходить дифференцированно к учащимся, учитывая их возможности и спо­собности.

Безусловно, в каждом классе есть и такие учащиеся, которым все эти виды помощи окажутся недостаточными. В этом случае таким детям учитель может на карточках дать готовый план зада­чи, а учащиеся впишут только действия или на карточках будут записывать действия по порядку таким образом: 1) П+П=; 2) П-П = ; 3) П:П = .

Знаками +, —, :, X указываются действия между числовыми данными, вместо промежуточного искомого ставятся прямоуголь­ники. Некоторым детям достаточно указать на карточке количест­во действий и сами действия знаками.

Например: «В трех школьных мастерских занимаются 115 уча­щихся. В слесарной мастерской школы занимаются 35 человек, в столярной — на 6 человек больше, остальные занимаются в швей­ной мастерской. Сколько человек занимается в швейной мастер­ской?»

Отдельным учащимся предлагаются карточки с дифференциро­ванной помощью в зависимости от индивидуальных возможностей учащихся.

Карточка Карточка

1) 35 чел.+б чел.=П 1) П+О=

2) 35 чел.+П чел.=П 2) П+П=

3) 115 чел.-П чел.=П 3) П-П=

381

Среди составных арифметических задач большое место и школе VIII вида занимают задачи, решаемые приведением к едп нице. В содержание таких задач входят две величины, связанные пропорциональной зависимостью. При этом даются два значения одной величины и одно из соответствующих значений другой ве­личины, а определить нужно второе значение этой величины. Третья величина, связанная с двумя данными, остается без изме­нения. Например, в задаче: «За 3 булочки заплатили 6 р. Купили 5 таких булочек. Сколько будет стоить покупка?» — даны два значения количества (количество булочек 3 и 5), одно значение стоимости. Второе значение стоимости неизвестно (искомое). Цена постоянная.

Подготовительная работа к решению этих задач начинается с решения простых задач на нахождение суммы одинаковых слагае­мых (или на нахождение произведения), на деление на равные части, тесно связанные с задачами на прямое приведение к единице.

С задачами на нахождение стоимости по цене и количеству учащиеся знакомятся в 3-м классе.

Можно начать работу над такими задачами, устраивая игры в магазин. На витрине магазина разложены товары. Это могут быть учебные принадлежности, книги, игрушки с указанием цены. Учи­тель обращает внимание на термин «цена». Он просит назвать цены ряда товаров. Ученику предлагается выбрать предмет для покупки и купить не один, а два или три таких предмета. На основе этого составляется задача, например: «Цена одной тетради 2 р. Валя купила 3 тетради. Сколько денег уплатила Валя за все тетради?»

Учитель ставит вопросы: «Что известно в задаче? Что показы­вает число 2р.? (Цену одной тетради.) Что показывает число 3 тетради? (Количество купленных тетрадей.) Что неизвестно в за­даче?» (Стоимость всей покупки.) (Слова «цена», «количество», «стоимость» учащиеся могут и не называть. Их называет в этом случае учитель.)

При разборе задачи учитель интонацией голоса подчеркивает слова «цена», «количество», «стоимость». Задача иллюстрируется.

Чтобы учащиеся лучше запомнили слова «цена», «количество», «стоимость», а также чтобы нагляднее показать зависимость между величинами, целесообразно составить таблицу, в которую необходимо вписать эти величины.

382

Составляются и решаются аналогичные задачи на покупку дру­гих предметов.

Учитель подводит учащихся к обобщению, что по цене и коли­честву можно узнать стоимость, если цену товара умножить на количество.

 

Цена Количество Стоимость
2 Р. 3 тетради ?

На следующий год (4-й класс) вводятся те же задачи на зави­симость между величинами, но неизвестными являются в них либо цена, либо количество. Учащиеся сами должны научиться составлять таблицы при решении подобных задач и вписывать в них числовые данные. Искомые могут быть обозначены либо зна­ком вопроса (?), либо буквой х.

 

Цена Количество Стоимость
2 р. 3 булочки 5
? 4 булочки 8 р.
2 р. ) 16 р.

Сначала решается задача на определение стоимости по цене и количеству. Рассуждение проводится так: «Какова цена 1 булоч­ки? Запишем под словом «цена» 2 р. Сколько булочек купили? (Какое количество булочек?) Под словом «количество» запишем 3 булочки. Что нужно узнать в задаче? (Стоимость булочек.) Как узнать стоимость, если известны цена и количество? (Цену умно­жить на количество: 2 р. хЗ=6 р.)»

Далее учащиеся знакомятся с задачей вида: «Купили 4 булочки за 8 р. Сколько денег заплатили за 1 булочку?»

Рассуждаем так: «Что известно в задаче? Что означает число 4 булочки? (Количество.) Что означает число 8 р.? (Стоимость.) Что нужно узнать? (Цену 1 булочки.) Каким действием можно узнать цену 1 булочки?» (Если учащиеся не ответят, что нужно 8 р.:4, то рассуждение проводится так: «4 булочки стоят 8 р. Дешевле или до­роже стоит 1 булочка? Во сколько раз дешевле 1 булочка, чем 4 бу­лочки? Значит, какое действие надо сделать?»)

Решив еще несколько задач, учащиеся подводятся к выводу: «Чтобы определить цену, нужно стоимость разделить на количест­во».

Так же учащиеся учатся решать задачи на определение количе­ства по стоимости и цене.

383

Решение таких задач готовит учащихся к знакомству с задача­ми на прямое приведение к единице, например: «3 тетради стоят 9 р. Сколько стоят 5 таких тетрадей?»

Разбор этой задачи лучше начинать с вопроса задачи: «Можно ли сразу узнать, сколько стоят 5 тетрадей? Почему нельзя? Что нам неизвестно? Можно ли узнать из условия задачи, сколько стоит одна тетрадь? Каким действием это можно узнать? Почему делением? Когда будем знать цену одной тетради, можно ли уз­нать стоимость 5 тетрадей? Каким действием? Почему? А какой главный вопрос задачи? Ответили ли мы на главный вопрос зада­чи? Какой первый вопрос задачи? Какой второй вопрос задачи? Запишем решение задачи с вопросами».

Решение

1. Сколько стоит одна тетрадь?

9 р.:3=3 р.