Методика решения составных арифметических задач

Составной или сложной арифметической зада­чей называется задача, которая решается двумя и большим числом арифметических действий. Ре­шение составной задачи по сравнению с простой более затрудни­тельно для школьников с нарушением интеллекта. Если при реше­нии простой задачи ученик должен был установить зависимость между числовыми данными и, руководствуясь вопросом задачи, выбрать нужное действие, то в составной задаче (хотя бы в два действия) ученик должен либо получить недостающее третье дан­ное, либо из трех числовых данных выбрать два и, учитывая отношения между ними, выбрать нужное действие. Получив про­межуточный ответ, он должен, установив зависимость между ним и имеющимся в условии третьим числовым данным, а также руко­водствуясь главным вопросом задачи, выбрать нужное действие. Следовательно, чтобы решить сложную задачу, ученик должен провести цепь логических рассуждений и сделать умозаключения.

Психологические исследования по изучению особенностей ре­шения составных арифметических задач показывают, что умствен­но отсталые школьники не узнают знакомых простых задач в контексте новой составной задачи, не актуализирует имеющихся знаний по решению уже известной, бывшей в опыте ученика, простой задачи. Это приводит к тому, что учащиеся составную

375

>

задачу решают по "аналогии с простой одним арифметическим действием.

Подготовительная работа к решению составных задач должна представлять собой систему упражнений, приемов, целенаправлен­но ведущих учащихся к овладению решением составных задач.

К решению составных задач учитель может переходить тогда, когда убедится, что учащиеся овладели приемами решения про­стых задач, которые войдут в составную задачу, сами могут соста­вить простую задачу определенного вида.

При решении составных задач учащиеся должны или к данным ставить вопросы, или к вопросу подбирать данные. Поэтому в подготовительный период, т. е. на протяжении всего первого года и в начале второго года обучения, следует предлагать учащимся задания: 1) к готовому условию подобрать вопрос; 2) по вопросу составить задачу, подобрав недостающие числовые данные. Эти умения пригодятся учащимся при решении составных задач.

Полезны решения таких пар задач, в которых вторая задача яв­ляется продолжением первой, т. е. ответ первой простой задачи яв­ляется данным второй простой задачи. Например: «В вазе лежало 5 красных и 7 желтых яблок. Сколько всего яблок в вазе?»; «В вазе лежало 12 яблок, 8 яблок съели. Сколько яблок осталось в вазе?»

Учащиеся решают каждую задачу отдельно. Решение задач сопоставляется. Учитель просит объяснить, почему первая задача решается сложением, а вторая — вычитанием. Обращается вни­мание учащихся на первое числовое данное второй задачи. Эта подготовительная работа необходима для того, чтобы сами уча­щиеся впоследствии научились составлять такие пары задач.

Вначале учитель предлагает: 1) только подобрать вопрос ко второй простой задаче, а затем составить вторую задачу из пары, первая задача предлагается готовой; 2) составить вторую задачу с числом, которое получилось при решении первой задачи, напри­мер: «Маша получила новогодний подарок. В нем было 6 шоколад­ных конфет и 5 карамелек. Сколько всего конфет было в подар­ке?» Решив задачу, ученики дают ответ: «Всего 11 конфет». «Те­перь придумайте задачу о конфетах на вычитание, чтобы в ней было число 11», — говорит учитель. Такой вид упражнений помо­жет учащимся выделять впоследствии из составной задачи про­стые.

Полезным приемом является составление условия задачи на основе наблюдений операций над предметными совокупностями и

376

подбор к этому условию вопроса. Например, учитель просит уча­щихся внимательно посмотреть, что он делает (кладет в корзину сначала 5 больших орехов, а потом еще 3 маленьких), и расска­зать. Ученики рассказывают: «В корзину вы положили сначала 5 больших орехов, а потом 3 маленьких ореха». (Числовые данные можно записать на доске.) «Какой вопрос можно поставить к условию задачи? (Сколько всего орехов положили в корзину?)

Повторите задачу».

Далее сами учащиеся включаются в предметно-практическую деятельность, и на основе выполнения действий составляются задачи. Сначала составляются задачи простые, а затем и состав­ные. Например, учитель дает ученику задание: «В коробке лежат 4 карандаша. Володя положил в коробку еще 3 карандаша. Затем он отдал 5 карандашей Тане. Что сначала сделал Володя? (Положил в коробку карандаши.) Что потом сделал Володя? (Отдал карандаши Тане.) Сколько действий сделал Володя? Какие действия? Какие вопросы можно задать Володе? Составим задачу и решим ее».

Необходимо сопоставить решение простой и составной задач. Причем составная задача должна отличаться от простой только дополнительным числовым данным и вопросом. Например: «У мальчика было в альбоме 8 марок. Он положил туда еще 6 марок. Сколько всего марок стало в альбоме?»; «У мальчика в альбоме было 8 марок. Он положил туда еще 6 марок. 9 марок он подарил товарищу. Сколько марок осталось в альбоме?» Разбираются и решаются обе задачи. Решение задач с вопросами и ответами записывается.

Далее необходимо сопоставить решение и содержание простой

и составной задач.

Во сколько действий решена первая задача? Во сколько действий решена вторая задача? Сколько действий сделал ученик в первой задаче? Сколько —

во второй?

Чем еще отличается условие первой задачи от условия второй?

Какой вопрос первой задачи? Какой вопрос второй задачи? Почему нельзя было сразу ответить на вопрос второй задачи?

Чего мы не знали?

377

Сопоставляя простые и составные задачи, учащиеся постепенно научатся узнавать в составной задаче простые, уже бывшие в опыте

13 Перова М. Н.

их решения. Обращая внимание на усложняющуюся ситуацию зада» чи (наличие нового действия и дополнительного числа) и сопостав­ляя вопросы задачи, учитель помогает учащимся организовать тща­тельный анализ предметной ситуации задачи, раскрыть зависимость между числовыми данными, между данными и искомым. Сначала сравнение простой и составной задач проводится после их решения, так же как и при решении простых задач, а по мере накопления опыта сравнение задач должно предшествовать решению.

Тщательному анализу условия задачи способствует требование] подчеркнуть разным цветом две простые задачи в составной.

После решения составных задач (с тремя числами) с разнород­ными действиями на нахождение суммы и остатка предъявляются | составные задачи, составленные из различных, ранее решавшихся видов простых задач: задачи на увеличение числа на несколько единиц и нахождение суммы и др.

Например: «Ребята посадили в первом ряду 8 елочек, а во втором на 4 елочки больше. Сколько всего елочек посадили ребя­та?» Нередко эту задачу учащиеся решают одним действием. Поэ­тому важно выяснить, почему эту задачу нельзя решить одним действием. Надо тщательно разобрать условие задачи, сделать рисунок или краткую запись условия, которые бы показали, что число елочек во втором ряду неизвестно, а поэтому сразу и нель­зя узнать, сколько всего елочек посадили ребята.

Разбор задачи, как было показано выше, можно начинать от главного вопроса или от числовых данных.

Покажем рассуждения, которые надо провести, подводя уча­щихся к выбору действий от главного вопроса задачи: «Что нужно узнать в задаче? Какие елочки входят в число всех елочек? Можем ли сразу узнать, сколько всего елочек посадили ребята? Почему нет? Какого числа мы не знаем? Можно ли сейчас узнать, сколько елочек во втором ряду? Каким действием это можно сделать? Почему? Теперь мы знаем, сколько елочек в первом ряду, и узнали, сколько их во втором ряду. Можно ли теперь ответить на вопрос задачи? Каким действием? Почему? Решили ли мы задачу? Почему? Во сколько действий задача? Какое первое действие? Какое второе действие? Запишем решение задачи с пояснением».

Решение.

1) 8 ел.+4 ел. = 12 елочек посадили ребята во втором ряду;

2) 8 ел.+ 12 ел.=20 елочек посадили ребята.
378

Решение задачи учитель закрепляет с учащимися, задавая им вопросы: «Что означает число 12 елочек в ответе первого дейст­вия? Как получили это число? Почему сделали сложение? Что показывает число 20 елочек? Сколько действий нужно было сде­лать, чтобы ответить на вопрос задачи? Почему сразу одним дей­ствием нельзя было ответить на вопрос задачи? Чего мы не знали?»

Далее можно провести последующую работу над этой же зада­чей (см. с. 357).

В период ознакомления с решением составных задач наблюда­ется смешение их с простыми. Поэтому эффективными оказыва­ются задания, в которых требуется: в простой задаче поставить такой вопрос, чтобы она решалась двумя действиями; дополнив простую задачу данными, изменить вопрос, чтобы задача решалась двумя действиями; в составной задаче изменить вопрос так, чтобы она решалась одним действием. Постоянное сопоставление про­стых и составных задач поможет сознательному их решению.

Полезны упражнения на составление сложных задач. Это будет способствовать лучшему усвоению видов простых задач, умению их узнать и вычленить в составной задаче, поможет учащимся более сознательно осуществлять анализ задач.

По мере знакомства учащихся с новыми арифметическими дей­ствиями — умножением и делением (3-й класс), а также с новы­ми математическими понятиями — учащиеся решают новые как простые, так и составные задачи, в которые входят эти простые. Например, учащиеся решают задачи на нахождение произведения и суммы или остатка, на деление на равные части и нахождение суммы, на увеличение (уменьшение) числа в несколько раз и нахождение суммы и разности и т. д. Составные задачи усложня­ются как за счет включения новых видов простых задач, так и за счет увеличения количества действий, которые надо выполнить, чтобы ответить на вопрос задачи. Если во 2-х и 3-х классах учащиеся решают задачи в 2 действия, то в 4—5-х классах — в 2—3 действия, в последующих классах — в 3—4 действия.

При решении составных задач учащихся следует научить общим приемам работы над задачей: умению анализировать содер­жание задачи, выделяя известные данные, искомое (т. е. устанав­ливая, что нужно узнать в задаче), определять, каких данных недостает для ответа на главный вопрос задачи (т. е. устанавли­вая промежуточные искомые). Такому анализу содержания задачи

13* 379

во многом способствует умение учащихся конкретизировать его с
помощью предметов, иллюстраций, краткой записи, схем и черте­
жей. Учитель должен научить учащихся приемам решения задач,
показать, что решение любой задачи складывается из ряда этапов:
работы над содержанием, составления плана и выбора действий]
выполнения действий и проверки правильности решения. ,

В практике работы школы VIII вида оправдал себя прием рабо-| ты с карточками-заданиями, в которых излагается последователь ность работы над задачей.

Приведем один образец такого задания:

1.Прочитай задачу внимательно.

2. О чем эта задача? ч

3. Что известно в задаче? Назови каждое число и объясни, что
оно показывает. .