Нахождение одной и нескольких частей от числа

Данная тема изучается сразу же после изучения темы чение дроби».

Объяснение нового понятия следует начать с решения практ! ческой задачи, например: «От доски длиной 80 см отпилили -^ част Какой длины доску отпилили?» Эту задачу нужно показать ,-,, щимся на предметных пособиях. Взять планку длиной 80 ск

проверить ее длину с помощью метровой линейки, а затем спре

I сить, как найти часть этой планки. Учащиеся знают, что план

нужно разделить на 4 равные части и отпилить одну четверту! часть. Отпиленный кусок планки измеряется. Его длина оказыв* ется равной 20 см. «Как получили число 20 см?» — спрашивав учитель. Ответ на этот вопрос вызывает у некоторых учащихс затруднение, поэтому надо показать, что раз планку делили на равные части, то, следовательно, делили 80 см на 4 равные часп Запишем решение этой задачи: -% от 80 см составляет 80 см:4-=20 см.

Нахождение нескольких частей от числа в школе VIII шадв производится с помощью двух арифметических действий. В пер­вом действии определяется одна часть от числа, а во вто-

2

ром — несколько частей. Например, надо найти -5- от 15. Находим
1 21

•д- от 15, 15:3=5; -? больше -о- в 2 раза, поэтому 5 нужно умно­жить на 2. Находим •*• от 15, 5-2 = 10.

3 от 15 15:3=5; | от 15 5-2=10.

Затем запись свертывается: 15:3-2=10. Далее решаются зада­чи на нахождение нескольких частей от числа.

316

НАХОЖДЕНИЕ ЧИСЛА ПО ОДНОЙ ЕГО ЧАСТИ*

|Работу над данной темой следует связать с задачами чисто
] I

|ктического содержания, например: «Известно, что ^ р. со-

|вляет 50 к. Чему равно все число? (Сколько копеек в целом бле?)» Учащиеся знают, что целый рубль — это 100 к. I Если это известно, то зная, чему равна его •*• часть, они опре-1лят неизвестное число, •*• часть рубля, т. е. 50 к., умножаем на ! (знаменатель дроби).

Таким образом рассматриваем решение еще ряда задач, связан-йх с определенным жизненным опытом и наблюдениями учащих-К: «-т- м составляет 25 см. Сколько сантиметров в 1 м?»

Решение. 25 см-4= 100 см.

«На платье израсходовали 3 м материи, что составляет -з- всей пленной материи. Сколько материи купили?» Решение. 3 мхЗ=9 м — это вся купленная материя. Теперь надо убедиться, что -^ от 9 м составляет 3 м, т, е. выполнить проверку, -д- от 9 м мы находить умеем. Нужно 9 м:3=3 м. 3 м — это -т часть всей купленной материи. Значит, задача решена верно.

Когда учащиеся научатся решать задачи на нахождение числа по одной части, необходимо сопоставить решение этих задач с уже известными, т. е. с задачами на нахождение одной части от числа, выявляя сходство, различие в условии, вопросе и решении задач.

Только прием сравнительного анализа позволит отдифференциро­вать задачи этих двух видов и сознательно подойти к их решению. Для сопоставления эффективнее всего, как показывает опыт, предлагать задачи с одинаковой фабулой:

«В классе 16 учащихся. Девочки составляют -т- часть всех учащихся. Сколько девочек в классе?» Решение Найти от 16 учеников. 16 уч.:4=4 уч.

Ответ. В классе 4 девочки.

317

«В классе 4 девочки, что составляет -у часть всех учащи}! класса. Сколько всего учащихся в классе?»

Решение

4 уч. -4=16 уч.

Ответ. В классе 16 учащихся.

Вопросы и задания

1.Покажите систему изучения обыкновенных дробей.

2. Разработайте конспект урока, основной целью которого является озн|
комление с получением дроби.

3. Раскройте методику ознакомления с алгоритмами сложения и вычит|
ния обыкновенных дробей с одинаковыми знаменателями.

4. Составьте фрагмент урока по ознакомлению учащихся с сокращение»
дробей. На каком свойстве дробей основано правило сокращения дробей?

Глава 18