2 раз. Необходимо показать учащимся, что пример у 3 можно про*
2 2 I
читать по-разному: у умножить на 3, у увеличить в 3 раза, найти!
22 I
произведение у и 3; множители у и 3, найти произведение. После!
2 о 6 '
решения примера уЗ=у следует сравнить произведение и пер-
6 ' 2 ~ 2 6 0
выи множитель: у больше у в 3 раза, •=• меньше у в 3 раза.
Надо решать примеры и с неизвестным числителем или знаменателем в первом множителе вида: -~--2=-г, т=г-2=-я-.
Можно предложить и более трудные примеры вида:
. а , 4 1 ,-, 3 П г-, 2
1 - а -4= Ъи ' а = Г > П'П=5
2. Дробь тг увеличить в 3 раза.
Деление дроби на целое число дается в следующей последовательности:
1.Деление дроби на целое число без предварительного сокра
щения.
2. Деление смешанного числа на целое число без предваритель
ного сокращения.
3. Деление с предварительным сокращением.
Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокращение облегчает процесс выполнения действия. Например:
4Ж2 315Ш5
5-2=7^-=5' 34-9 = Т":9 = 4^=Т2-
1 3
314
На основе наблюдений и конкретной деятельности учащиеся
н'мнодятся к выводу: при делении дроби на целое число доли
1.ПЮВЯТСЯ мельче, число же долей не изменяется. Например,
| гни взять половину яблока и разделить эту половину на 2 рав-
ц.к' части (-я- : 2 ] , то получится по -т яблока. Записываем: -к\2=-^.
Каждый ученик должен самостоятельно половину круга (полоски, Отрезки) разделить на 2 равные части и записать результат деле-
ния.
Далее рассматривается деление, например, -^ на 3 равные
2 2
Части: -^:3=к- Учащиеся видят, что получились при делении девятые доли, а число их не изменилось. Сравниваются числитель и знаменатель частного и делимого: знаменатель увеличился в 3 раза, а числитель не изменился. Отсюда можно сделать вывод: чтобы разделить дробь на целое число, нужно знаменатель умножить на это число, а числитель оставить тот же. На основе правила решается пример: Затем на предметах уча-
щиеся должны еще раз показать процесс деления и убедиться, что пример решен верно.
Деление дроби на целое число необходимо сопоставить с умножением дроби на целое число, решая взаимно обратные примеры вида При этом следует сравнить
произведение и частное соответственно с первым множителем и делимым. Это надо для того, чтобы учащихся подвести к обобщению: при умножении дроби на целое число произведение во столько раз больше первого множителя, сколько единиц содержится во втором множителе. Аналогичный вывод нужно сделать и для частного.
Деление смешанного числа на целое дается по аналогии со вторым способом умножения смешанного числа на целое, например: Смешанное число обращается в непра-
вильную дробь и деление производится по правилу деления дроби на целое число.
Наиболее сильных учащихся нужно познакомить и с особыми случаями деления. Если целая часть смешанного числа нацело делится на делитель, то смешанное число не обращается в непра-
315
вильную дробь, например: 2-^'.2=\-^. Нужно делить сначала
часть, результат записать в частное, затем делить дробную част
2 22
правилу деления дроби на целое число: 12^:3=47^=4-^. В
случае деление смешанного числа нужно показать на предметиц пособиях. После изучения всех четырех действий с обыкновений ми дробями предлагаются сложные примеры со скобками и порядок действий.