Сложение и вычитание обыкновенных дробей
1. Сложение и вычитание дробей с одинаковыми знаменателями.
Исследование, проведенное Алышевой Т.В.1, свидетельствует о целесообразности при изучении действий сложения и вычитания обыкновенных дробей с одинаковыми знаменателями использовать аналогию со сложением и вычитанием уже известных учащимся
Алышева Т. В. Изучение арифметических действий с обыкновенными дробями учащимися вспомогательной школы //Дефектология.—1992.— № 4.— С. 25-27.
308
исел, полученных в результате измерения величин, и проводить ручение действий дедуктивным методом, т. е. «от общего к частому».
Сначала повторяется сложение и вычитание чисел с наимено-»аниями мер стоимости, длины. Например, 8 р. 20 к. ± 4 р. 15 к.
Лри выполнении устного сложения и вычитания нужно склады-
1ать (вычитать) сначала рубли, а потом копейки.
3 м 45 см ± 2 м 24 см — сначала складываются (вычитаются) метры, а потом сантиметры.
; При сложении и вычитании дробей рассматривается общий случай: выполнение этих действий со смешанными дробями (знаменатели одинаковые): 3-?- ± 1-г. В этом случае надо: «Сложить (вычесть) целые числа, затем числители, а знаменатель остается тем же». Это общее правило распространяется на все случаи сложения и вычитания дробей. Постепенно вводятся частные случаи: сложение смешанного числа с дробью 1у + -=•= \-= \, потом
( 1 1\ ^ '
смешанного числа с целым \-= + 4 = 5у . После этого рассматриваются более трудные случаи вычитания: 1) из смешанного числа дроби: 4д~п=4д-; 2) из смешанного числа целого: 4д—2=2-д-.
После усвоения этих достаточно простых случаев вычитания учащиеся знакомятся с более трудными случаями, когда требуется преобразование уменьшаемого: вычитание из одной целой единицы или из нескольких единиц, например:
\ О О О 2, л О <-)Э О п~
1~Ь-~Ь~Ь-~5' 6~~5~2Ь~'5-2'5-
В первом случае единицу нужно представить в виде дроби со знаменателем, равным знаменателю вычитаемого. Во втором случае из целого числа берем единицу и также ее записываем в виде неправильной дроби со знаменателем вычитаемого, получаем в уменьшаемом смешанное число. Вычитание выполняется по общему правилу.
Наконец рассматривается наиболее трудный случай вычитания: из смешанного числа, причем числитель дробной части меньше
1 3
числителя в вычитаемом: 5^—^. В этом случае надо уменьшаемое изменить так, чтобы можно было применить общее правило, т. е. в уменьшаемом занять из целого одну единицу и раздробить
309
.5 1 6
в пятые доли, получим 1=-г, да еще -г, получится -г, прим<-|>
,6 3 5 5 &
примет такой вид: 4^~^, к его решению уже можно применим
общее правило.
Использование дедуктивного метода обучения сложению и вычп танию дробей будет способствовать развитию у учащихся умении обобщать, сравнивать, дифференцировать, включать отдельные случаи вычислений в общую систему знаний о действиях с дробями.
2. Сложение и вычитание дробей и смешанных чисел с разными знаменателями*.
а) больший знаменатель является НОЗ:
о ?+|, Н; 2) 1|+', 4-ш' 3> 4+4 4-4
б) больший знаменатель не является НОЗ:
п 3 4 7 2. 9г .3 , 7 ,3 2. 04^2.. 1 гЗ 92 1} Б-+7' 8-9' 2) %+8' 15—5' 3) %+%' 5Т-23'
Выполнение сложения и вычитания дробей, имеющих разные з менатели, представляет значительные трудности для умственно -сталых школьников, так как, прежде чем выполнять действия, требуется привести дроби к наименьшему знаменателю, в связи с чем внимание учащихся переключается на дополнительную операцию (удлиняется запись выражения — требуется несколько раз переписывать выражение, ставя знак равенства). Это требует от учащихся сосредоточенности внимания. А внимание учащихся с нарушением интеллекта характеризуется, как известно, отвлекаемостью, рассеянностью. Это нередко приводит к потере целых, знака равенства, а то и компонента. Чтобы избежать подобных ошибок, можно на первых порах предложить учащимся запись выражения проговорить устно, а именно сказать, какие операции надо выполнить и в какой последовательности: 1) привести дроби к наименьшему знаменателю; 2) выполнить действие; 3) произвести, если нужно, преобразование в ответе.
При выполнении сложения дроби со смешанным числом надо обратить внимание учащихся на значение суммы и каждого слагаемого, сравнив со свойством суммы целых чисел.
То же самое необходимо сделать и при знакомстве с вычитанием дробей, подчеркнув общность свойств разности целых и дробных чисел.
Для этого целесообразно решить и сравнить пары примеров на нахождение суммы и разности целых и дробных чисел: 310
396+127
4,3 . 3 , -1 5 + 5' 1ТО+5ТО
Вывод: сумма больше каждого из слагаемых, разность меньше или равна уменьшаемому.
Сложение и вычитание дробей необходимо связать с жизненно-практическими заданиями и упражнениями, которые могут быть мыполнены и устно. Например:
«На отделку блузки отрезали -^ м белой и -^ м синей тесьмы.
Сколько тесьмы пошло на отделку блузки?»
ъ - - о -3
«От рейки длиной 2 м отпилили один кусок длиной -% м и
„ 1 ,, - ->
второй — длиной 4" м. Какова длина оставшейся рейки?»
Отметим, что в этих задачах даны числа, полученные от измерения величин. Это позволяет закрепить в памяти учащихся наиболее употребительные в повседневной жизни соотношения: •к- м — это 50 см, -^ м — это 25 см, -? м — это 20 см, -^ ч — это 15 мин и т. д.
В этот период следует решать с учащимися примеры на нахождение неизвестных компонентов сложения и вычитания, сопоставляя нахождение неизвестных компонентов сложения и вычитания дробных и целых чисел.
Учащиеся должны убедиться, что переместительный и сочетательный закон арифметических действий над целыми числами распространяются и на действия над дробными числами. Так же как и при изучении действий с целыми числами, учащиеся получают
лишь практическое знакомство с законами — их использование
3 для рационализации вычислений. Например, решить пример -^+2
удобнее, переставив местами слагаемые, т. е. использовав переместительный закон сложения.
Решение примеров с предварительным обдумыванием порядка выполнения действий развивает сообразительность, смекалку, предупреждает шаблонность и имеет большое корригирующее значение.