1 Изучение нумерации чисел 21—99 '

Изучение нумерации чисел от 21 до 99 лучше всего начать с

|разования любого двузначного числа из десятков и единиц.

|цдо показать общий принцип образования этих чисел. Например,

или 2 десятка палочек и еще 5 палочек; 2 дес. см (2 дм) и еще

см. Получили число двадцать пять. Числительные образуются из

ух слов. Сначала произносятся десятки, а затем единицы. Это

• к:ло откладывается на счетах. Так из десятков и единиц на

шкретном счетном материале учащиеся должны научиться обра-

.опывать любое двузначное число и называть его. Одновременно

"ни учатся обозначать эти числа письменно с помощью цифр.

Знакомство с письменной нумерацией лучше всего проводить с помощью абака. На абаке учитель просит отложить число (напри­мер, 21). Ученик анализирует это число. Оно состоит из двух десятков и одной единицы. В кармашки вставляются цифры, соот­ветствующие числу десятков и единиц. Хорошим пособием явля­ются и таблички с круглыми десятками, в которых нуль заставля­ется определенной цифрой, обозначающей число единиц.

После того как учащиеся поймут общий принцип образования и записи двузначных чисел, необходимо поработать над образова­нием и записью чисел 21—99 и отработать последовательность чисел от 1 до 100. Например, к двум брускам (двум десяткам) добавляется один кубик (одна единица), получается число двад­цать один, добавляется еще один кубик (одна единица), получает­ся число двадцать два — это два бруска и два кубика. Два бруска и три кубика образуют число двадцать три и т. д. Два бруска и девять кубиков образуют число двадцать девять, а если прибавить еще один кубик, то получится два бруска и десять кубиков, 10 ку­биков можно заменить одним бруском. Получилось 3 бруска — 3 десятка, или тридцать.

Важно постоянно обращать внимание на образование каждого нового десятка. Например, после образования числа 99 прибавить еще 1 единицу (кубик) — получилось 9 десятков и 10 единиц. 10 единиц заменим одним десятком, получим 10 десятков, или сто. Очень важно и на пособиях, и на числах особое внимание обратить на образование нового десятка: .

29+1=2 дес. 9_ед.+!_ед.=2 дес. 10 ед.=3 дес. 30-1=2 дес. 10 ед.-1 ед.=2 дес. 9 ед.=29 99+1=9 дес. 9_е!ц.+1_ед.=9 дес. 10 ед. = 10 дес. = 100 100-1 = 10 дес.-1 ед.=9 дес. 10 ед. —1 ед.=9 дес. 9 ед.=99

149


Каждому ученику следует предложить просчитать по одному 1 до 100 и обратно, оперируя различными пособиями и без пос бий.

Особое внимание рекомендуется обращать на счет от заданног до заданного числа с переходом через десяток (29, 30, 31] Можно также дать задания: «Считайте от 58 до 61, от 77 до 83 Считайте обратно: от 92 до 88, от 43 до 39».

Так же как и при изучении чисел первого и второго десятка, не обходимо закрепить с учащимися свойства натурального ряд чисел: каждое число больше предыдущего и меньше последующей на единицу. Это только тогда становится ясным умственно отста лым школьникам, когда они не только называют числовой ряд I определенной последовательности, но и выполняют такие задания:

1.Назвать число на единицу меньше (больше) данного.

2. Заполнить числовой ряд недостающими числами:

 

4. Указать числа меньше и больше данного числа.

5. Каждое число в пределах 100 ученик должен уметь показать
на пособиях, знать, что оно образуется из предыдущего путем
прибавления еще одной единицы или путем вычитания из после­
дующего числа одной единицы.

В этот период большое внимание уделяется десятичному ана­лизу чисел (сначала с помощью пособий, а потом и без них). Учащиеся учатся составлять число из десятков и единиц, а также раскладывать его на десятки и единицы.

Можно предложить такие задания:

1. Взять два пучка палочек и еще 5 палочек. Какое число
получили? (То же самое задание выполняется на брусках и куби­
ках, полосках и квадратах.)

2. Взять 5 гривенников и 7 копеек. Сколько всего денег?