Вспомогательные материалы по теме.

ГЕНОИНДИКАЦИЯ ВОЗБУДИТЕЛЕЙ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ

Обнаружение и идентификация возбудителей инфекционных заболеваний представляет собой одну из важнейших задач микробиологии. Решение этой задачи обеспечивается богатым арсеналом методических приемов, начиная от классических методик микробиологического тестирования и заканчивая иммунохимическими и молекулярно-биологическими методами. В каждом случае характер и сложность диагностических приемов зависят от биологии искомых возбудителей инфекции, которые претерпевают адаптивные изменения под воздействием экологических факторов, антибактериальной терапии и т.д.

Поэтому в последние годы все чаще и чаще традиционные, а порой и недавно наиболее перспективные методы диагностики оказываются недостаточными или принципиально неприменимыми. В связи с этим в настоящее время при проведении диагностических исследований стремятся к выявлению в исследуемых образцах специфических фрагментов нуклеиновых кислот патогенов.

Одним из наиболее часто применяющихся с этой целью методов является гибридизация специфических последовательностей нуклеиновых кислот (зондов) с фрагментами генома искомых патогенов, с помощью которой проводят обнаружение в исследуемых образцах, идентификацию возбудителей до вида, рода или семейства, дифференцируют патогенные и непатогенные штаммы одного вида (токсигенные и нетоксигенные Escherichia coli. Vibrio cholerae, Yersinia enterocolitica и т.д.). Зонды представляют собой меченные радиоактивными (32Р, 35S, 125J) или хромогенными (фотобиотин, аминолинк) метками одноцепочные участки нуклеиновых кислот (в большинстве случаев ДНК) длиной, как правило, 32-37 нуклеотидов, которые связываются с комплементарными последовательностями в процессе реассоциации ДНК. Эти последовательности, в зависимости от типа используемых гибридизационных проб, могут быть обнаружены в геноме штаммов одного или близко родственных видов либо в гомологичных генах изолятов различных видов (например, гены, кодирующие синтез термолабильных энтеротоксинов E.coli и V.cholerae, R-плазмиды Serratia и Klebsiella spp.).

Искомые последовательности доступны обнаружению, даже если они составляют 0.001% генома возбудителя. При этом не требуется обязательного изолирования чистой культуры патогенов, и процесс идентификации в различных клинических биосубстратах занимает от 6 до 48 ч. Чувствительность метода составляет от 2х103 до 1х106 КОЕ/мл, специфичность гибридизации очень высока (0,5-0,8% ложноположительных результатов).

Вместе с тем достаточно сложная техника проведения экспериментов по гибридизации с использованием радиоактивно меченых проб препятствует широкому внедрению метода в диагностические лаборатории. Поэтому в последнее время широкое применение получила полимеразная цепная реакция (ПЦР), основанная на многократном копировании выбранной нуклеотидной последовательности генома с помощью ДНК-полимеразы, синтезирующей взаимно комплементарные цепи ДНК, начиная с двух олигонуклеотидных праймеров (затравок), комплементарных противоположным цепям ДНК в участках, ограничивающих последовательность-мишень и ориентированных 3' и 5'-концами навстречу друг другу. При синтезе ДНК праймеры физически встраиваются во вновь образуемые молекулы ДНК, и каждая из таких цепей, синтезированных с помощью одного из праймеров, может служить матрицей для синтеза комплементарной нити с помощью другого праймера. Для этого лишь надо денатурировать образовавшиеся на первой стадии реакции двухцепочечные молекулы ДНК, дать возможность праймерам комплементарно присоединиться к ДНК и осуществить элонгацию. Эти три стадии составляют цикл ПЦР и приводят к удвоению количества ДНК в образце.

Любая из вновь синтезированных цепей ДНК служит матрицей для синтеза новых молекул ДНК, поэтому они будут соответствовать по длине и последовательности участку ДНК, выбранному для амплификации. Эти молекулы образуются уже после второго цикла ПЦР, а в последующих циклах будет происходить экспоненциальный рост числа именно таких, ограниченных с двух концов праймерами, молекул ДНК. Их количество определяется формулой (2n-2n)х, где n - число циклов ПЦР, 2n - количество ПЦР-продуктов неопределенной длины, синтезируемых постоянно, но "разбавляемых" в ходе реакции, x - первоначальное количество копий матрицы в образце.

Следовательно, теоретически за 20 циклов ПЦР можно амплифицировать 220 (около 106) копий заданного участка ДНК, что позволяет теоретически обнаруживать единственную молекулу искомой ДНК в образце. Для получения удовлетворительных результатов исследования, как правило, достаточно провести 27-30 циклов ПЦР в связи с тем, что к этому моменту накопление ДНК-продукта из экспоненциального становится линейным из-за истощения пула нуклеотидов, праймеров, инактивации полимеразы, конкуренции со стороны неспецифических продуктов амплификации и от прочих причин. Выявление амплифицируемых фрагментов осуществляют, как правило, путем их разделения методом гель-электрофореза и визуализации в УФ свете после окрашивания этидием бромида или посредством ДНК-ДНК-гибридизации с внутренним олигонуклеотидом (зондом).

Из схемы реакции становится понятным, что метод обладает широкими возможностями для обнаружения возбудителей инфекционных заболеваний различной этиологии. Относительная простота постановки, быстрота, высокая чувствительность и специфичность придают полимеразной цепной реакции значительные преимущества при лабораторной диагностике вирусных инфекций, а также при выявлении микроорганизмов, культивирование которых слишком длительно и трудоемко, а различные варианты иммунохимической диагностики (серологическое тестирование, иммуноферментный анализ, метод флюоресцирующих антител не вполне надежны. Этим методом удается обнаруживать около 100 м.к./мл в пробе с применением для визуализации результатов электрофореза в агарозном геле или 1-25 клеток при использовании с этой целью дот-гибридизации. Незаменима ПЦР при обнаружении вирулентных штаммов бактерий, достигаемом путем амплификации (фрагментов генов, кодирующих различные факторы вирулентности (tox - ген Corynebacterium diphtheriae. inv - ген Y.enterocolitica). Для исследования с использованием ПЦР при выявлении патогенных микроорганизмов доступны не только свежевзятые образцы (биоптаты и т.д.), но и замороженные, фиксированные этанолом или формалином пробы.

Полимеразная цепная реакция - единственный на настоящее время методический подход, способный доказать присутствие в образце обладающих патогенным потенциалом некультивируемых форм микроорганизмов с последующей их идентификацией путем амплификации, к примеру, генов 16S рРНК, их секвенирования и последующего сравнения полученных результатов с нуклеотидными последовательностями аналогичных генов известных микроорганизмов. Таким образом были идентифицированы возбудители бациллярного ангиоматоза Rochalimaea henselae, болезни Виппла - актиномицет Tropherima whippelii. В настоящее время с использованием ПЦР ведется поиск предполагаемых ранее инфекционных агентов - возбудителей саркоидоза, заболевания Крона, малакоплакии, хронического возвратного остеомиелита.