2.2. Назначение и структура технической позиции

 

Техническая позиция представляет собой подготовленный в инженерном отношении земельный участок, на котором располагается комплекс зданий и сооружений с общетехническим и специальным технологическим оборудованием, предназначенный для приема, хранения, сборки, испытаний ЛА и полезных грузов, а также для проведения проверок и регламентных работ с ними.

Техническая позиция занимает промежуточное положение между заводом, на котором изготавливается ЛА, и стартовой позицией, которая является заключительным звеном в одном цикле подготовки ЛА к пуску. На ТП проводятся операции по укомплектованию ЛА и полезных грузов, а также осуществляются автономные и комплексные испытания, заправка объектов компонентами топлива и сжатыми газами, стыковка блоков в единую систему ЛА и подготовка ее к транспортировке на стартовую позицию.

Здания и сооружения ТП оснащаются не только специальным технологическим оборудованием для проведения работ, связанных с предстартовой подготовкой ЛА, но и техническими системами, обеспечивающими нормальные условия для жизнедеятельности и работы обслуживающего персонала. Все они соединяются между собой густой сетью транспортных коммуникаций в виде железнодорожных путей, дорог с твердым покрытием, а в случае необходимости и водными каналами. Обычно в непосредственной близости от ТП строится взлетно-посадочная полоса для приема и отправки транспортных самолетов с ЛА на борту. Для транспортировки собранного ЛА с ТП на СП прокладываются дороги, и используется специальное транспортное оборудование.

Расстояние между ТП и СП определяется условиями безопасности при аварийных ситуациях или при возможном нападении. Однако при этом учитывается и то обстоятельство, что уменьшение этого расстояния, во-первых, сокращает сроки и расходы, связанные со строительством специального пути для транспортно-установочного агрегата, во-вторых, уменьшает время транспортировки ЛА с технической позиции на стартовую, что позволяет исключить применение при транспортировке средств термостатирования.

На состав и структуру элементов КСНО ТП значительное влияние оказывают класс и конструктивно-компоновочная схема ЛА, а также технологические принципы, положенные в основу сборки и подготовки ЛА к полету.

Технические позиции, предназначенные для обслуживания ЛА легкого и среднего классов, занимают относительно небольшие площади, а их сооружения невелики по размерам и универсальны по назначению. Такая ТП состоит из ряда рабочих зон, расположенных в соответствии с технологическим планом технического обслуживания и подготовки ЛА данного типа. Эти рабочие зоны оборудованы различными подъемными, транспортными, контрольно-проверочными и другими устройствами и приспособлениями.

С завода-изготовителя ЛА поступает на площадку, где осуществляются контроль функционирования бортовой аппаратуры и предварительная зарядка воздушных баллонов. После этого ЛА перевозится на площадку, где навешиваются стабилизаторы и устанавливаются пиротехнические средства.

Если ЛА поступает на ТП в неснаряженном состоянии, то на этой площадке производятся их расстыковка и снаряжение с использованием подъемно-перегрузочных и снаряжательных средств.

Снаряженные ЛА перекладываются с транспортных стыковочно-монтажных тележек на транспортно-загружающие машины и перевозятся на место хранения готовых аппаратов, где осуществляется дозаправка воздушных баллонов до нормального давления. Полностью подготовленные и зачехленные аппараты хранятся на площадке на транспортно-загружающих машинах и по мере надобности доставляются на стартовую позицию.

Основное оборудование, применяемое на технической позиции типового комплекса ЛА класса «поверхность-воздух», можно разделить на следующие группы: транспортно-погрузочные средства; контрольно-испытательная аппаратура для проверки бортовых систем ЛА; снаряжательные средства; средства заправки ЛА данного типа воздухом.

К транспортно-погрузочным средствам относятся:

— автопоезд, состоящий из тягача и полуприцепа, оборудованного комплектом специальных приспособлений для крепления транспортируемого груза и укрытия его от атмосферных осадков;

— автокран, предназначенный для подъема и перекладки ЛА, а также используемый при ремонтных работах и снаряжательных операциях;

— транспортно-установочная машина, используемая для перевозки ЛА на СП и его установки на пусковое устройство. Транспортно-установочная машина оборудована устройствами для питания систем обогрева бортовых батарей, для освещения механизмов и звуковой сигнализации контроля рабочих операций.

Транспортная стыковочно-монтажная тележка предназначена для транспортировки отдельных блоков ЛА и их снаряжения. Она оборудована ложементами, позволяющими надежно закреплять отдельные отсеки.

Контрольно-испытательная аппаратура для проверки бортовых систем ЛА монтируется на самоходном шасси и называется контрольно-испытательной передвижной станцией (КИПС). В состав КИПС входят источники питания бортового оборудования ЛА; центральный распределительный щит с комплектом кабелей; пульт комплексной проверки электрических цепей; пульт для проверки и контроля аппаратуры автопилота; устройства для проверки аппаратуры радиоуправления; пневмооборудование для подачи в пневмосистему ЛА воздуха от воздухозаправщика.

К снаряжательным средствам относится стенд осмотра твердых топлив, который представляет собой стол с поворотной консолью и кареткой для подвески приспособлений.

Снабжается ЛА воздухом с помощью универсального воздухозаправщика, который смонтирован на автоприцепе.

Обслуживание тяжелых и сверхтяжелых ЛА осуществляется на технических позициях, занимающих площади в несколько квадратных километров и имеющих монтажно-испытательные корпуса площадью в сотни тысяч квадратных метров. Для выполнения всех технологических операций по приему с заводов-изготовителей блоков и отдельных узлов; по сборке их в единую систему; по проведению автономных и комплексных испытаний; по заправке объектов высококипящими компонентами топлива; по зарядке и хранению ботовых и наземных химических источников тока, а также по подготовке к транспортировке ЛА на СП тяжелых ЛА имеются следующие здания и сооружения:

— монтажно-испытательный корпус (МИК) для ЛА и полезных грузов;

— заправочная станция;

— компрессорная с ресиверной;

— зарядно-аккумуляторная станция;

— хранилище ЛА;

— хранилище монтажно-стыковочного и подъемного-установочного оборудования;

— подъездные пути с разгрузочными площадками;

— сооружения со средствами энергоснабжения, вентиляции, теплоснабжения, водоснабжения, канализации, системами пожаротушения, связи и т. д.

— административные и служебные здания.

На ТП для ЛА с твердотопливными ускорителями и пороховыми двигателями расположены хранилище пороховых зарядов (помещение для пиротехнических устройств) и здание пристыковки твердотопливных ускорителей. Обычно эти сооружения выделяются в отдельную зону, так называемую пиротехническую позицию. Технологические принципы, положенные в основу сборки и подготовки ЛА к полету, являются определяющими при выборе схемы структурного построения технической позиции. Если сборка ЛА осуществляется на СП, на ТП производятся только подготовка и испытания отдельных элементов и систем. Роль ТП в этом случае минимальная. Если сборка ЛА и комплексные испытания осуществляются на ТП, значительно увеличивается число зданий, усложняются сооружения и оборудование, необходимое для проведения этих ответственных операций, и роль ТП при этом существенно возрастет.

Рассмотрим более подробно назначение, состав и структуру основных зданий и сооружений ТП, необходимых при использовании различных технологических принципов подготовки ЛА тяжелого класса к пуску.

Монтажно-испытательный корпус (МИК) является основным сооружением ТП, включающим комплект оборудования, который предназначен для приема с завода-изготовителя ступеней, блоков и отдельных узлов ЛА; их разгрузки; расконсервации и хранения, горизонтальной или вертикальной сборки ЛА; автономных и комплексных испытаний; проверки на герметичность; пристыковки головных блоков и перегрузки на транспортные средства для доставки на СП. Монтажно-испытательный корпус, предназначенный для сборки ЛА в вертикальном положении на стартовой платформе, называется зданием вертикальной сборки. В зависимости от количества одновременно подготавливаемых ЛА и их конструктивно-компоновочных схем МИК могут быть как однопролетными, так и многопролетными. Каждый пролет МИК предназначается для подготовки одного ЛА и оснащается всевозможным технологическим оборудованием, состав и структура которого зависят от характеристик обслуживаемого ЛА и принципов, положенных в основу его подготовки.

Для обеспечения высокого качества работ и безопасности обслуживающего персонала в состав МИК входят следующие агрегаты и системы:

— подъемно-перегрузочное оборудование, грузоподъемность которого зависит от принятой технологии работ;

— электросиловое оборудование, предназначенное для питания наземной аппаратуры;

— общетехническое оборудование для поддержания определенного температурно-влажностного режима, необходимого для нормальной работы обслуживающего персонала и функционирования электронной, вакуумной и другой аппаратуры;

— система обеспечения сжатыми газами и пневмовакуумное оборудование для пневматических испытаний отдельных блоков ЛА, зарядки бортовых баллонов и проверки герметичности коммуникаций и отсеков;

— контрольно-испытательные системы, которые включают в себя пульты систем управления, наведения, телеметрии и контроля, предназначенные для автономных проверок отдельных узлов и комплексных испытаний, проводимых для определения правильности функционирования всех систем ЛА в целом;

— система наземного электроснабжения спецтоками, предназначенная для обеспечения постоянным токов и током нестандартной частоты систем управления и измерений и включающая преобразователи, токораспредительные устройства, пульты дистанционного управления и т. п.;

— транспортные системы и магистрали для перемещения отдельных блоков ЛА из одного пролета в другой внутри МИК и доставки собранного аппарата на СП.

Все сборочные работы в МИК производятся с помощью монтажно-стыковочного оборудования, обеспечивающего требуемую точность и надежность выполняемых операций.

Монтажно-испытательный корпус полезных грузов предназначен для обслуживания и испытаний полезных грузов и головных блоков ЛА. Он может представлять собой либо часть МИК ЛА, либо отдельное здание, обычно значительно уступающее по размерам МИК ЛА и состоящее из одного или нескольких залов. Высота этого корпуса определяется габаритами головных блоков ЛА и способом их сборки.

Состав и структура контрольно-испытательной аппаратуры и технологического оборудования МИК полезных грузов зависят от объема и сложности работ, проводимых при приеме с заводов-изготовителей, хранении, нагрузке и выгрузке, проверки на герметичность и сборке полезных грузов и головных блоков.

Так, МИК, предназначенные для обслуживания космических объектов, должны удовлетворять повышенным требованиям к чистоте, поскольку пыль, грязь или посторонние предметы, попавшие в космический объект, в космосе, в состоянии невесомости, вызывают серьезные помехи в работе аппаратуры и жизнедеятельности членов экипажа. Поэтому доступ в МИК космических объектов обычно осуществляется через так называемую камеру чистоты.

Заправочная станция (ЗП) служит для заправки космических объектов и разгонных ступеней ЛА высококипящими компонентами топлива и сжатыми газами. На станции производят заправку горючим, окислителем и газами (азотом, гелием и др.) маршевых, тормозных и двигателей орбитального маневрирования, а также баков последних разгонных ступеней ЛА.

Заправочная станция представляет собой отдельный комплекс сооружений, расположенный на значительном удалении от других объектов ТП и включающий хранилища компонентов топлива и сжатых газов, насосную станцию, дозаторную, пультовые, холодильный центр и другое оборудование, необходимое для проведения заправочных операций. Заправочная станция оборудуется системами вентиляции, промстоков, пожаровзрывобезопасности, стойкими к воздействию агрессивных компонентов и их паров. Хранилища компонентов топлива обычно размещаются на безопасном расстоянии в отдельных сооружениях, соединенных с ВС системой подающих трубопроводов.

Компрессорная станция предназначена для производства, хранения и распределения сжатого воздуха, азота и гелия и представляет собой специальное сооружение, в котором размещаются преобразовательно-компрессорное оборудование, насосы и газификаторы, фильтровально-осушительные установки и распределительные щиты. В состав компрессорной станции входят баллонные батареи для накопления и хранения сжатых газов, называемые ресиверной.

Через систему распределительных устройств сжатые газы по магистралям высокого давления подаются в МИК и хранилище СП. Коллекторы и баллоны ресиверной оснащаются предохранительными клапанами и разрывными мембранами на случай аварийного повышения давления.

Для дистанционного управления выдачи сжатых газов из секций ресиверной и подачи их на ТП и СП служат электропневмоклапаны, смонтированные в пневмощитах. Основной арматурой пневмосистем являются газовые редукторы, предохранительные клапаны, электропневмоклапаны и вентили.

Зарядно-аккумуляторная станция служит для подготовки и зарядки аккумуляторных батарей, используемых в качестве бортовых источников электропитания полезных грузов и ЛА. Эта станция используется также для зарядки аккумуляторных батарей, заключающейся в проведении нескольких циклов “заряд-разряд”, что способствует принятию большего запаса электроэнергии.

Зарядно-аккумуляторная станция — это, как правило, отдельное помещение или здание с системами, обеспечивающими приготовление и заливку электролита, заряд и разряд батарей, их контроль перед установкой на борт ЛА, а также со специальным холодильным оборудованием для уменьшения саморазряда батарей.

Хранилища агрегатов систем наземного обеспечения и ЛА представляют собой специально оборудованные помещения, предназначенные для хранения элементов КСНО или полностью собранных ЛА в условиях, обеспечивающих готовность их к немедленному применению по назначению.

Обычно ЛА хранятся на транспортно-загрузочных машинах или специальных тележках, на которых они доставляются в хранилище. Все хранилища оборудуются подъемно-перегрузочными механизмами для погрузочных работ, а также системами поддержания температурно-влажностного режима для исключения резких перепадов температур, что особенно важно при хранении твердотопливных ЛА.

Здание пристыковки твердотопливных ускорителей служит для сборки и подстыковки твердотопливных ускорителей к ЛА и представляет собой упрощенное здание вертикальной сборки с необходимым комплектом специального технологического оборудования. Все системы здания пристыковки твердотопливных ускорителей должны быть взрывобезопасными и тщательно заземленными. Поскольку расходы, связанные со строительством такого сооружения, велики, то для пристыковки твердотопливных ускорителей иногда используется МИК ЛА при соблюдении необходимых мер безопасности.

2.3. Назначение и структура стартовой позиции

Стартовая позиция представляет собой подготовленный в инженерном отношении земельный участок с комплексом зданий и сооружений с общетехническим и специальным технологическим оборудованием, предназначенный для приема с ТП, проведения технических проверок, предстартовой подготовки и пуска ЛА.

На СП проводятся заключительные операции, связанные с подготовкой и проведением пуска ЛА, а также снятие ЛА с пускового устройства в случае несостоявшегося запуска. Основными из этих операций являются:

— установка ЛА на пусковое устройство;

— предстартовые проверки ЛА и полезного груза;

— заправка (в случае необходимости) компонентами топлива и сжатыми газами;

— наведение ЛА;

— термостатирование;

— пуск;

— контроль за параметрами предстартовой подготовки;

— слив компонентов топлива и снятие ЛА с пускового устройства в случае несостоявшегося запуска.

Состав и структура элементов КСНО на СП зависят от класса и конструктивно-компоновочной схемы ЛА, для обслуживания которого предназначена данная стартовая позиция; от технологических принципов, положенных в основу подготовки ЛА к пуску, от характера полезной нагрузки и планируемого количества запусков в заданный промежуток времени.

Так, для ЛА легкого класса СП представляет собой спланированный участок местности с расположенным на нем подвижным пусковым оборудованием, в состав которого входят проверочно-пусковые системы, подъемно-транспортные агрегаты, аппаратура контроля и управления, а также вспомогательные машины.

На практике нет строгого разделения функций между технической позицией и стартовой ЛА легкого класса. В зоне расположения СП могут находиться не только системы предстартовой подготовки ЛА, но и оборудование для проведения восстановительных работ, а также хранилища с подготовленными ЛА. Такое расположение зоны ремонта хотя и неудачно с точки зрения технологичности, однако обладает рядом преимуществ в плане живучести и готовности ЛА к пуску при нарушении связи ТП или ее поражении, поскольку расстояние между ТП и СП выбирается из условий невозможности одновременного вывода их из строя в случае нападения или аварии.

В состав СП, предназначенных для обслуживания ЛА тяжелого и сверхтяжелого классов, входит большое количество сложных строительных сооружений заглубленного или полузаглубленного типа, расположенных на значительном расстоянии друг от друга, что связано с защитой их от избыточного давления возможного взрыва и акустического воздействия при работе двигательной установки ЛА на стартовом устройстве.

В зависимости от технологической схемы, положенной в основу подготовки ЛА к пуску, такие СП оснащаются разнообразным спецтехническим и общетехническим оборудованием, таким, как:

— пусковые устройства для приема и удержания ЛА в положении для пуска, обеспечения подвода к нему электрических, заправочных, пневматических, дренажных и других коммуникаций, проведения предстартовой подготовки, наведения и пуска;

— транспортные агрегаты для доставки ЛА и их отсеков с ТП на СП и транспортировки их в пределах СП;

— подъемно-установочные устройства для подъемно-перегрузочных работ при транспортировке, сборке и обслуживании ЛА, а также для установки и сборки ЛА на пусковом устройстве и снятия ЛА в случае несостоявшегося пуска;

— средства обслуживания работ, необходимость в проведении которых возникает в ходе предстартовой подготовки, для обеспечения доступа обслуживающего персонала к отсекам ЛА, находящегося в вертикальном положении, и для удобного подхода к местам стыковки наземных коммуникаций с бортовыми системами;

— заправочные системы для транспортировки, хранения и выдачи дозы на борт ЛА компонентов топлива и сжатых газов, а также слива топлива в случае несостоявшегося запуска;

— системы термостатирования для обеспечения заданного теплового режима элементов ЛА и поддержания необходимой температуры компонентов топлива;

— система дистанционного и автоматического управления технологическими операциями предстартовой подготовки;

— система вертикализации и наведения ЛА по азимуту;

— электросиловое оборудование для питания бортовых систем ЛА, находящегося на пусковом устройстве, а также системы наземного обеспечения спецтоками;

— контрольно-испытательная аппаратура для контрольно-проверочных испытаний приборов, агрегатов и систем ЛА;

— проверочно-пусковое оборудование для предстартовой подготовки и подачи команды на пуск;

— вспомогательные системы для пожаротушения и нейтрализации компонентов топлива, проведения вспомогательных операций, возникающих в процессе предстартовой подготовки ЛА и аварийных ситуациях;

— система водоснабжения для обеспечения водой общетехнических и специальных технологических сооружений, а также для хозяйственных нужд;

— система промышленных стоков для сбора и отвода за пределы стартовой позиции загрязненных сточных вод, их очистки и обезвреживания перед сбросом в водоемы;

— системы отопления, вентиляции и газового анализа для создания нормальных условий работы обслуживающего персонала и основных элементов ЛА и КСНО;

— средства грозозащиты для предохранения ЛА, стоящего на пусковом устройстве, и высотных элементов КСНО;

— средства связи для переговоров обслуживающего персонала и получения команд от руководителя работ по подготовке ЛА.

Стартовые позиции в зависимости от количества пусковых устройств, одновременно обслуживаемых системами наземного обеспечения данной СП, могут быть как одиночными (или одноканальными), так и многоканальными. Многоканальные СП позволяют проводить серию пусков одновременно или через малые промежутки времени.

Характер работ и последовательность предполетной подготовки ЛА различного класса имеют многие общие черты и различаются лишь продолжительностью операций, техническими средствами их обеспечения и некоторой спецификой, вызванной особенностями конструкции ЛА. Это объясняется тем, что, независимо от метода подготовки, цель всех выполняемых операций — обеспечение полета ЛА.

На СП выполняются следующие основные операции:

Установка ЛА на место запуска. С помощью установщика (транспортно-установочного агрегата, установщика лафетного типа и т. д.) ЛА занимает полетное положение так, чтобы он оказался над пусковой системой. Затем механизмами пусковой системы или установщика (или и того и другого) ЛА сближается до соприкосновения опорных элементов с опорами пусковой системы. Масса ЛА передается на пусковую систему, и ЛА закрепляется специальными приспособлениями, после чего захваты установщика разводятся и его стрела опускается в исходное положение.

Если ЛА доставляется на предполетную позицию в вертикальном положении на пусковой системе с помощью транспортера, то эта часть вместе с ЛА опускается на опоры пускового стенда с помощью гидродомкратов транспортера. После закрепления платформы транспортер с помощью тех же домкратов опускается и выходит из-под платформы.

При «фиксированном» методе подготовки системы ЛА к запуску она доставляется на предполетную позицию в виде блоков и собирается на пусковой системе. В этом случае установка блока в вертикальное положение и сборка ЛА выполняются с помощью кранов или башен обслуживания. Технология дальнейших работ с собранной системой ЛА такая же, как и при других методах подготовки.

Ориентация ЛА. Ориентация ЛА заключается в установке ее в вертикальное положение и, при необходимости, повороте по азимуту. Эта установка осуществляется с помощью опор или гидродомкратов пусковой системы.

Поворот по азимуту ранее производился с помощью поворотного круга пусковой системы. Обычно он выполняется сразу после установки ЛА на пусковую систему до заправки, так как последующее подведение средств обслуживания, кабель-заправочных башен, кабель-мачт с коммуникациями (в особенности, если они размещены не на поворотном круге) обычно исключает возможность поворота. Кроме того, заправка увеличивает массу ЛА, требует наличия более мощного поворотного механизма, что нецелесообразно. Контроль и точность установки в вертикальное положение и поворота ЛА обеспечиваются оптическими приборами и электронными системами ориентации.

Подвод агрегатов обслуживания и подключение связей. Для проведения дальнейших работ к ЛА подводятся агрегаты обслуживания и подстыковываются пневматические, заправочные, дренажные и электрические коммуникации. Агрегаты обеспечивают доступ обслуживающего персонала к различным ярусам, подачу приборов и оборудования, а также защиту персонала от метеорологического воздействия (ветра, осадков, солнечной радиации). Некоторые агрегаты имеют закрытые площадки, снабженные установками для кондиционирования воздуха.

Пневматические коммуникации подстыковываются к наземным частям пневмоколодок, установленных на ЛА, заправочные и дренажные шланги — к заправочным и дренажным горловинам и бортовым разъемным соединениям, электрические кабели — к бортовым штепсельным разъемам и платам.

Если коммуникации отстыковываются заблаговременно (регламентные кабели, кабели проверочной аппаратуры, заправочные и дренажные шланги высококипящих компонентов топлива и т. д.), их прокладывают по башням обслуживания, фермам и другим агрегатам, которые отводятся за определенное время до пуска ЛА, если же коммуникации обеспечивают последние предполетные операции и проведение запуска, то их подводят к ЛА через кабель-заправочные башни, кабель-мачты и механизмы, расстыковываемые ходом ЛА при запуске. При этом на кабель-заправочных башнях и кабель-мачтах связи “земля—борт” могут прокладываться по площадкам и фермам, которые отводятся от ЛА поочередно в разное время.

Некоторые системы ЛА доставляются на предполетную позицию с пристыковыванными наземными коммуникациями и кабель-мачтами (в частности, при транспортировке ЛА в вертикальном положении вместе с ним доставляется кабель-заправочная башня). В этом случае возникает необходимость лишь в состыковке с ответными частями, расположенными в наземных сооружениях (например, коммуникаций платформы с ответными частями пускового стенда).

Предполетные проверки аппаратуры и систем ЛА. Предполетные проверки проводятся с помощью проверочно-пускового оборудования и включает в себя автономные и комплексные испытания.

Автономные испытания — это испытания отдельных систем, агрегатов ЛА и наземного оборудования для проверки правильности их функционирования. Комплексные испытания — совокупность операций, проводимых для проверки правильности функционирования всех систем ЛА и наземного оборудования. При комплексных испытаниях в наземных условиях имитируется предполетная подготовка запуска и полета ЛА. Важной особенностью всех этих испытаний является проверка правильности и надежности стыковки коммуникаций.

Результаты испытаний записываются телеметрическими системами и многоканальными регистраторами. После расшифровки и анализа результатов система ЛА заправляется компонентами топлива и сжатыми газами.

Заправка ЛА компонентами топлива и сжатыми газами. Операции заправки относятся к числу необратимых процессов, т. е. после них обязательно должен быть запуск ЛА. Строго говоря, понятие «заправка» может быть применено только к заправке агрессивными токсичными компонентами, так как в случае несостоявшегося пуска компоненты должны быть слиты, ЛА снят с пусковой системы и отправлен для переборки на техническую позицию. Однако и при использовании неагрессивных и нетоксичных компонентов отмена пуска влечет за собой необходимость проведения трудоемких регламентных и профилактических работ. Заправляться ЛА может одновременно всеми компонентами топлива и сжатыми газами, если среди них нет самовоспламеняющихся. При их наличии применяется последовательная заправка с целью исключения возможности смещения случайно пролитых компонентов, при этом обычно сначала заправляются криогенными компонентами нижние баки (как наиболее длительная и опасная операция), затем верхние баки, затем заправляются все ступени горючим и сжатыми газами.

Баллоны и емкости ЛА заправляются сжатыми газами в два приема: вначале предварительная зарядка, затем — после выравнивания температуры и давления газа — дозарядка.

Термостатирование элементов систем ЛА. Термостатирование приборов ЛА, двигателей системы аварийного спасения и других элементов ЛА производится, как правило, в течение всего времени нахождения на предполетной позиции.

Воздушная система обеспечения теплового режима подключается сразу же после установки ЛА в исходное положение и отключается одной из последних, перед отводом башни (фермы) обслуживания. На некоторых предполетных комплексах термостатирование ведется и во время установки ЛА в исходное положение.

Жидкостная система обеспечения теплового режима подключается после установки ЛА в исходное положение и отключается перед отводом агрегатов обслуживания. В некоторых случаях она прокладывается по кабель-заправочной башне (мачте). Термочехлы для двигательной установки системы аварийного спасения и твердотопливных ускорителей, надеваемые на ТП, снимаются обычно также перед отводом агрегатов обслуживания.

Запуск ЛА. Запуску ЛА предшествуют отстыковка и отвод заправочных коммуникаций (некоторые из этих операций выполняются ранее), отвод агрегатов обслуживания на безопасное расстояние. Перед запуском весь обслуживающий персонал покидает предполетную позицию и может находиться только в центре управления полетом.

После набора готовностей всех систем на пульте запуска дается команда. Ключ устанавливается в положение «Запуск», и нажатием кнопки включается автоматическая схема запуска.

При возникновении неисправностей и аварийных ситуаций происходят отмена запуска и возврат ее элементов в исходное положение. При несостоявшемся запуске из ЛА сливаются компоненты топлива, нейтрализуются баки и он снимается с пусковой системы.

Все работы с системой ЛА на СП выполняются по командам системы дистанционного управления технологическими операциями. Большинство операций осуществляется автоматически или дистанционно, при этом нахождение обслуживающего персонала у ЛА исключается. Все операции предполетной подготовки фиксируются на пульте пуска набором транспарантов готовностей [26, 56].

 

2.4. Организация процесса функционирования технологического оборудования в период предстартовой подготовки ЛА

2.4.1. Характеристика объекта подготовки

 

Роль КСНО в процессе предстартовой подготовки ЛА целесообразно рассмотреть на примере использования его отдельных элементов в наземном межполетном техническом обслуживании ракетно-космической транспортной системы (РКСТ) “Энергия—Буран”, состоящей из орбитального корабля (ОК) и универсальной ракеты-носителя.

Двухступенчатая ракета-носитель “Энергия” выполнена по схеме “пакет” с продольным разделением ступеней (рис. 2.1).

Первая ступень состоит из четырех боковых блоков. В качестве второй ступени используется центральный моноблок. Стартовая масса ракеты-носителя “Энергия” 2400 т, ее высота около 60 м. Она способна доставлять на околоземную орбиту полезный груз массой более 100 т. Блоки первой ступени ракеты работают на жидком кислороде и углеводородном горючем. Диаметр блока первой ступени около 4 м, длина 40 м.

Вторая ступень работает на жидком кислороде и жидком водороде. Она является основой носителя. С помощью узлов связи к ней крепятся блоки первой ступени и полезный груз. Длина этой ступени около 60 м, диаметр примерно 8 м.

Все двигатели ракеты-носителя “Энергия” начинают работать со старта, создавая в начале полета суммарную тягу около 3600 тc.

Являясь одновременно орбитально-космическим (ОК) и воздушным кораблем, “Буран” соединяет в себе качества, как искусственного спутника Земли, так и самолета. Кроме этого, ОК “Буран” осуществляет выход на круговую орбиту высотой 250 км после его отделения от РН “Энергия” на высоте 150 км.

В хвостовой части ОК “Буран” находятся двигатели орбитального маневрирования, работающие на жидком кислороде и углеводородном горючем.

Орбитальный корабль “Буран” выполнен по самолетном схеме “бесхвостка” с низкорасположенным треугольным крылом двойной стреловидности и присущими самолету аэродинамическими органами управления (элеронами, рулем направления, балансировочным щитком и пр.).

Выбор крылатой самолетной схемы позволил решить задачу снижения орбитального корабля в атмосфере при изменении скоростей полета до 85-340 км/ч, осуществление бокового маневра в атмосфере на расстоянии до 2000 км и горизонтальной посадки ОК как планера без двигателя на посадочную полосу.

При стартовой массе 105 т ОК «Буран» имеет следующие габариты: общая длина 36,4 м, размах крыльев 24 м, высота на стоянке 16,5 м. В зависимости от решаемых задач ОК может либо доставлять на орбиту грузы массой до 30 т, либо осуществлять орбитальные полеты с возвращаемой полезной нагрузкой массой около 20 т.

 

2.4.2. Организация работ на технической позиции

 

Схема ТП и СП комплекса приведена на рис. 2.2.

Рабочий цикл СТО при запуске РКТС начинается с доставки элементов РКС с заводов-изготовителей на ТП. Для предшествующей отечественной РН данного класса (правда, не принятой к эксплуатации) “Н-1” на космодроме были созданы производственные мощности по изготовлению и испытанию крупногабаритных корпусных элементов. Решение это оказалось неэффективным из-за невозможности постоянной загрузки производственного оборудования, сложности обеспечения нормального технологического процесса, необходимости прикомандирования квалифицированных кадров с базовых заводов. Поэтому для РКТС “Энергия” было признано целесообразным изготовлять крупногабаритные элементы и их заводские испытания производить на соответствующих предприятиях страны, осуществляя на космодроме только сборку этих блоков в единую систему.

Отсутствие водных путей и значительная удаленность космодрома от заводов-изготовителей исключили применение водного и автомобильного транспорта, а обычно применяемый для перевозки на космодром блоков других РН железнодорожный транспорт не позволял обеспечить доставку блоков второй ступени и некоторых видов полезной нагрузки (ОК “Буран”) из-за габаритов. В результате было принято решение о доставке основных блоков РКТС по воздуху.

В настоящее время воздушная транспортировка элементов РКТС обеспечивается специализированным самолетом АН-225 ("Мрия"), который позволяет перевозить на фюзеляже грузы массой до 250 т, диаметром до 10 м и длиной до 70 м. У АН-225 есть все для перевозки элементов РКТС: мощное шасси из 16 двухколесных тележек; узлы крепления груза на фюзеляже (передний воспринимает только поперечные и вертикальные нагрузки, задний еще и осевые); двухкилевое хвостовое оперение, позволяющее перевозить грузы, выходящие по длине за пределы фюзеляжа; система наддува (в том числе и подогретым воздухом) перевозимых грузов.

Погрузка элементов РКС на фюзеляж транспортного самолета и разгрузка их на аэродроме Байконур осуществляются сверху с помощью стационарного подъемного устройства, под которое подкатывается транспортировщик. Этим же устройством элемент РКС укладывается на автомобильный трайлер, который доставляет его в соответствующий МИК. Туда же поступают и другие элементы, доставляемые на космодром в основном по железной дороге. Начинается следующий этап подготовки РКС — сборка поступивших с разных заводов различными путями элементов в единую систему.

Сборка РН производится в МИК РН, где поступившие блоки доукомплектовываются, проверяются и собираются в ступени. Особенность сборки РН “Энергия” заключается в том, что монтаж обеих ступеней ракеты ведется непосредственно на стартово-стыковочном блоке (так называемом блоке “Я”), не являющемся элементом ракеты-носителя. Через блок “Я” осуществляются все виды связи (механические, пневмогидравлические, электрические) РН с пусковой системой и наземным оборудованием комплекса. Сборка и стыковка производятся в горизонтальном положении: к закрепленному вертикально на стапеле блоку “Я” последовательно пристыковываются два боковых блока первой ступени, затем центральный блок (вторая ступень), к которому пристыковывают еще два боковых блока первой ступени. Работы на стапеле производятся с помощью мостовых кранов.

После сборки проводятся комплексные испытания систем РН, ракета перегружается на транспортно-установочный агрегат и готова к стыковке с полезной нагрузкой.

Сборка “Бурана” осуществляется в МИК ОК: поступающие в него раздельно фюзеляж с крыльями, киль, бортовые системы и другие части, агрегаты и детали корабля тщательно проверяются и собираются в единое целое. Здесь же весь корпус “Бурана” обклеивается теплозащитными плитками. Собранный “Буран” выводится для испытания двигательной установки на площадку огневых контрольных испытаний рядом с МИК ОК. Прошедший комплексные испытания ОК доставляется в МИК РН, где он крепится с помощью специальных пирозамков к центральному блоку РН. Работы на технической позиции заканчиваются испытанием системы “Энергия—Буран” как единого объекта. Система в сборе вывозится с ТП, по пути к СП в монтажно-заправочном корпусе орбитальный корабль с помощью оборудования заправочной станции заправляется горючим. После этого работы по подготовке к пуску переносятся на СП.

Ракета-носитель с пристыкованной полезной нагрузкой доставляется на СП железнодорожным транспортно-установочным агрегатом лафетного типа (рис. 2.3). При этом РКС закреплена на опорах — ложементах на стреле агрегата, транспортировка осуществляется по рельсовому двухколейному пути со скоростью 3—5 км/ч с помощью двух двухсекционных тепловозов [26].

 

2.4.3. Организация работ на стартовой позиции

 

На космодроме Байконур пуск РКС “Энергия” может быть осуществлен с устройств двух типов. В состав СП входят две одинаковые штатные пусковые системы, удаленные друг от друга на 500 метров. Кроме них на расстоянии около 5 км от СП имеется пусковая система другого типа — универсальный комплекс стенд-старт (УКСС). Последний используется для отработки в наземных условиях блоков первой, второй ступени и “пакета” в целом с включением маршевых двигателей на практически полное полетное время. Именно с этой установки был осуществлен первый пуск “Энергии” в мае 1987 г. Второй пуск “Энергии” с “Бураном” в качестве полезной нагрузки в ноябре 1988 г. произведен со штатной стартовой установки. Стенд-старт имеет односкатный газоотражатель, отводящий продукты сгорания двигательных установок РКС в газоход, заглубленный на 40 м от поверхности. На штатной стартовой установке газы из 20 сопел работающих двигателей устремляются вниз в вертикальный колодец глубиной 23 м и диаметром около 20 м, на дне которого в центре установлен отражатель в виде восьмигранной пирамиды, направляющий газовый поток в три газохода, которые отводят его от пусковой системы.

Транспортно-установочный агрегат с РКС на стреле подходит к пусковой системе СП, пристыковывается к ней и с помощью гидравлического механизма подъема переводит РКС из транспортного, горизонтального положения в пусковое, вертикальное положение, а затем опускает РКС со стартово-стыковочным блоком на восемь металлических опор прямоугольного сечения. Блок “Я” соединяется с опорами с помощью механических замков-фиксаторов, обеспечивая надежное удержание РКС в вертикальном положении на пусковом устройстве. Через опоры и блок “Я” наземная часть электрических, пневматических и гидравлических коммуникаций соединяется с бортовой. После передачи веса РКС на опоры пусковой системы и закрепления РКС на них стрела транспортно-установочного агрегата может быть опущена, а сам агрегат — отведен с СП.

К стоящей на пусковой установке РКС (рис. 2.4) подводится башня обслуживания, имеющая раздвижные площадки обслуживания. Будучи сведены, они охватывают РН со всех сторон и обеспечивают доступ персонала ко всем обслуживаемым и контролируемым визуально элементам РН. К РН также подводятся подвижные площадки заправочно-дренажной мачты, несущие кабели связи “земля-борт”, а также некоторое оборудование и коммуникации для заправки и дренажа, которые и пристыковываются либо непосредственно к РН, либо через блок “Я”.

Установление связей “земля-борт” по электрическим, гидравлическим и пневматическим коммуникациям дает возможность приступить к решающему этапу предстартовой подготовки РКТС — заправке компонентами топлива и предпусковой проверке всей бортовой аппаратуры РН и полезной нагрузки.

В комплексе РКТС “Энергия” реализованы основные современные принципы обеспечения надежности функционирования и безопасности эксплуатации оборудования сложных технических систем. Сюда следует отнести такие чисто конструкторские мероприятия, как, например, использование новейших материалов с уникальными характеристиками, многократное резервирование критичных элементов комплекса и т. п. Безопасность комплекса повышена за счет введения дополнительных систем, предотвращающих или ликвидирующих аварийную ситуацию. Особое внимание уделено соответствующей организации технологического процесса предстартовой подготовки и пуска, которая предусматривает возможность выполнения большинства операций в случае возникновения внештатной ситуации несколькими различными способами с приведением комплекса в одинаковое конечное состояние.

Чрезвычайная интенсивность процессов при предстартовой подготовке к пуску, обусловленная как габаритами и энерговооруженностью РКС, так и в немалой степени теплофизическими характеристиками топливных компонентов, большим количеством одновременно действующих и, самое главное, взаимодействующих систем вызвали необходимость создания точных, быстродействующих и надежных систем контроля и управления объектами комплекса, функционирующих, как правило, в автоматическом режиме. По мере выполнения операций технологического процесса предстартовой подготовки, пуска и полета РКС меняются характер функционирования и роль этих систем, подчиняясь строгой иерархии, заложенной при разработке базирующегося на цифровых вычислительных машинах автоматического комплекса.

Характер взаимодействия систем управления комплекса может быть проиллюстрирован участием их в заправке РКС компонентами топлива. Как известно, системы заправки топливных компонентов относятся к специальному технологическому оборудованию комплекса и предназначены для приемки, хранения и выдачи на борт РКС заданного количества компонента требуемой кондиции. Спецификой РКС “Энергия” является то, что два из трех компонентов топлива, заправляемых в бортовые баки РН, являются криогенными, т. е. имеют температуру кипения ниже 120 К: температура жидкого водорода 20 К, а кислорода 90 К. Более того, для повышения плотности и максимальной сохранности топлива в бортовых баках РН на активном участке траектории криогенные компоненты топлива заправляются переохлажденными, т. е. имеющим температуру ниже нормальной температуры кипения. Указанное обстоятельство отразилось на конструкции, составе и функционировании заправочных систем (ЗС). Все элементы ЗС, находящиеся в то или иное время в контакте с компонентами, снабжены самой эффективной на сегодняшний день теплоизоляцией — экранно-вакуумной, уменьшающей теплоприток к жидкости извне. Для отвода тепла, прошедшего через теплоизоляцию или переданного жидкости от каких-либо источников, в состав хранилища компонента введена холодильная установка, работающая на соответствующем низком температурном уровне. А в связи с тем, что степень переохлаждения компонента может меняться в некотором диапазоне в зависимости от полетного задания, ЗС должна включать устройство, за сравнительно небольшое время обеспечивающее понижение температуры компонента непосредственно перед пуском. Таким образом, криогенная ЗС еще задолго до вывода РКС на СП должна функционировать автономно, практически не взаимодействуя с другими системами комплекса. Работа ЗС осуществляется по командам системы, выполняющей одновременно функции контроля и управления. На основании показаний датчиков давления, температуры и других параметров включаются или отключаются агрегаты и устройства, обеспечивающие поддержание этих параметров на заданном уровне.

После установки РКС на СП и пристыковки ее к наземным коммуникациям начинается подготовка этих коммуникаций к выдаче криогенного компонента, заключающаяся в удалении из внутренних полостей газов, которые могут засорить компоненты или прореагировать с ними, охлаждении стенок этих полостей до уровня, исключающего испарение компонента, и заполнении магистралей компонентом. На данном этапе работа ЗС должна согласовываться с работой других систем комплекса. Взаимодействие осуществляется через работающую в непрерывном режиме автоматическую систему подготовки к пуску (АСУПП), которая координирует работу всех бортовых и наземных систем. Несколько сот датчиков бортовой системы централизованного контроля параметров показывают температуру и давление в различных точках конструкции РН, в отсеках и баках и через наземную аппаратуру и оборудование поддерживают эти параметры в заданных пределах.

Заправка РКС компонентами топлива является самым критическим этапом предстартовой подготовки. Вокруг стартового комплекса установлена зона повышенного внимания радиусом в 15 км. За 13,5 часов до пуска, когда начинается заправка, исключаются любые передвижения по зоне. С началом продувки систем персонал покидает площадки обслуживания, а с началом заправки жидкого водорода, примерно за 6 часов до пуска, на старте не остается ни одного человека — процесс предстартовой подготовки выполняется автоматически.

До начала заправки РКС компонентами топлива в работу включается система пожаровзрывопредупреждения (СПВП). Она должна срабатывать в нештатных ситуациях, ведущих к образованию в отсеках РН взрывоопасных смесей. В составе системы имеется несколько десятков высокочувствительных и точных газоанализаторов паров водорода, кислорода, керосина и пожарных извещателей, реагирующих на невидимое невооруженных глазом пламя водорода. Получаемая от датчиков информация обрабатывается и анализируется специализированным цифровым вычислительным комплексом (ЦВК). При возникновении пожаровзрывоопасной ситуации бортовая и наземная аппаратура СПВП подает в соответствующие отсеки газообразный азот или, в случае необходимости, высокоэффективное гасящее вещество - фреон.

Перед заправкой баков РКС топливом начинает работу система контроля заправки. Она использует дискретные и непрерывные датчики уровня, позволяющие измерять уровни компонентов по всей высоте бака. Их показания поступают через наземную аппаратуру в АСУПП и используются для управления процессом заправки.

Заправка бортовых баков РКС начинается с захолаживания и заполнения конечных участков наземных коммуникаций линии заправки (КУЛЗ). Сброс образующегося в КУЛЗ пара осуществляется через дренажные клапаны баков, подача компонентов в магистраль осуществляется на “предварительном” расходе, при котором исключается падение давления в баке. В процессе захолаживания КУЛЗ контролируется температура парожидкостной смеси перед заправочно-сливными клапанами РН. Если температура ее становится ниже определенной, то подача компонента временно прекращается и возобновляется только при повышении ее до температуры, несколько большей температуры кипения компонента. Контроль окончания захолаживания и заполнения КУЛЗ осуществляется по показаниям датчиков наземной системы, установленных на входе в блок “Я”. После получения сигнала об окончании захолаживания и заполнения КУЛЗ при работе в штатном режиме идет команда на подачу в баки компонента на “малом’ расходе. Температура компонента при “малом” расходе близка к температуре кипения, заполнение бака сопровождается генераций пара, что позволяет оценить герметичность бака. После прохождения зеркалом жидкости так называемого минимального нижнего уровня начинается заправка на “большом’ расходе, компонент при этом имеет номинальную температуру. При получении сигнала “предварительный уровень” расход переключается на “малый” и заправка продолжается до получения сигнала “номинальный уровень”. Нужно сказать, что работа ЗС компонентами топлива тесно связана с работой систем газоснабжения. Это объясняется не только необходимостью поддержания в бортовых баках определенного давления газовой среды, но и тем, что в баках криогенных компонентов находятся баллоны, предназначенные для хранения сжатых газов. Размещение газовых баллонов в криогенной жидкости позволяет повысить их вместимость при том же давлении хранения. Заполнение этих баллонов сжатым газом из наземной системы газоснабжения начинается только при погружении их в компонент. В ходе заправки непрерывно отслеживается соответствие параметров компонента и системы в целом заданным, в случае их отклонения выдаются команды на исполнительные органы, изменяющие эти параметры, а если этого не происходит, то следует команда на прекращение процесса. Так, например, если уровни компонента в баках первой ступени (боковых блоках) существенно различаются (что может привести к нерасчетным нагрузкам на конструкцию РН), следует команда на закрытие клапана на входе и команда на его открытие поступает только после выравнивания уровней.

По окончании заправки бортовых баков работа наземной и бортовой систем не прекращается. Вплоть до старта они осуществляют регулирование среднебаковой температуры и уровня переохлажденных компонентов топлива. Все параметры, характеризующие состояние РН и систем, при этом регистрируются, а необходимые — отображаются на пультах операторов.

С завершением заправки РКС компонентами топлива в действие вступают бортовой и наземный комплексы автономного управления (КАУ). Они способны обеспечить полностью автоматический режим предпусковых проверок всей бортовой аппаратуры РКС, выполнить предпусковые операции, осуществить запуск двигателей и управление системами и РКС при автономном полете. Перед пуском РКС в память вычислительной машины КАУ вводятся оперативные данные полетного задания, которые в определенной степени уточняют ранее размещенный массив информации на пуск: фактические температуры компонентов, последние данные по метеоусловиям и т. д. После этого начинается непрерывный автоматический режим работы РКС. По заданной циклограмме включаются различные системы, контролируется выполнение команд КАУ. При обнаружении неисправности АСУПП выдает команду автоматического прекращения подготовки (АПП). Выполнение дальнейших операций отменяется, и КАУ переходит в исходное состояние. В зависимости от момента выдачи команды АПП возможно принятие решения о повторении предпусковых операций, но уже со сдвигом момента пуска во времени. Если команда АПП поступила после так называемых необратимых операций (отстрела от РКС наземных электропневмо-коммуникаций, выдачи команды на запуск двигателей и т. д.), то необходимы восстановительные работы, выполняемые только при сливе из баков топливных компонентов.

В ходе предпусковых операций на борту РКС включаются бортовые источники электропитания. Вместе с ними свой контроль осуществляет система аварийной защиты двигателей. С помощью специальной системы приводятся в стартовое положение гироскопы. Отводятся площадки заправочно-дренажной мачты за исключением той, где проложена магистраль дренажа водорода. Перед запуском двигателя второй ступени включается система дожигания выбросов непрореагировавшего водорода. Запуск двигателей обеих ступеней осуществляется почти одновременно. Отвод последней площадки заправочно-дренажной мачты производится уже при движении РКС. Перед запуском двигателей начинает работать система шумоподавления, из емкостей которой вода разбрызгивается через форсунки в зоне двигательных установок, создавая защитный экран. РКС уходит со старта.

 

2.4.4. Функционирование наземного оборудования при полете РКТС

 

Продолжает работать система пожаровзрывопредупреждения, контролирующая состав среды в отсеках РКС. За безопасностью двигателей следит система аварийной защиты. При отклонении параметров какого-либо двигателя за установленные пределы выдается команда на выключение аварийного двигателя. Тем самым устраняется опасность его разрушения. В зависимости от момента выключения аварийного двигателя КАУ или продолжает реализацию программы полета, используя энергетику оставшихся двигателей, или автоматически изменяет ее в соответствии с заданием, хранящимся в памяти ЦВК. Для контроля и регистрации работы всех систем и агрегатов РКС в полете, а также параметров среды в отсеках, механических нагрузок на конструкцию используется специальная система измерений, включающая в себя несколько тысяч датчиков и устройств. Получаемая от них информация через радиосистемы передается на наземные измерительные пункты для последующей обработки и анализа.

Блоки первой ступени после выработки топлива попарно отделяются от РКС, затем разделяются и приземляются. Центральный блок — вторая ступень отделяется после набора суборбитальной скорости и приводняется в определенном районе акватории Тихого океана. Двигательная установка “Бурана” включается на высоте 150—160 км. Два импульса позволяют разогнать корабль до космической скорости, и он выходит на орбиту искусственного спутника. Выполнив программу полета, “Буран” разворачивается хвостом вперед. Двигательная установка дает тормозной импульс, и корабль берет курс на Землю. Начинаются планирование, заход на посадку и посадка на полосу.

Посадочный комплекс для “Бурана” расположен в 12 км от стартового сооружения. В его состав входят объединенный командно-диспетчерский пункт (ОКДП) и взлетно-посадочная полоса длиной 4500 м и шириной 84 м. В шестиэтажном здании ОКДП с аппаратным залом обзора размещены станция приема телеметрической и другой информации, главный зал управления и анализа, вычислительный комплекс системы навигации и посадки орбитального корабля, метеорологический центр и служба орнитологии. Задачи ОКДП — обнаружение, наведение, заход на посадку, остановка корабля, его послеполетное обслуживание и отправка в МИК.

Радиотехнические средства посадочного комплекса способны обнаружить возвращающийся корабль на дальности 400 км, на высоте 40 км. Посадочная скорость корабля — около 340 км/ч длина пробега — 1100…2000 м. Для сокращения пробега “Буран” снабжен тремя тормозными парашютами общей площадью 75 м2. Они выпускаются при скорости 300 — 330 км/ч, а при уменьшении ее до 50 км/ч — отстреливаются.

После возвращения корабля в МИК производятся диагностические, профилактические и ремонтно-восстановительные работы. Затем после испытаний корабль может быть установлен на новую РН для выполнения другой программы.