Лиофобными коллоидными системами являются такие системы, в которых частицы дисперсной фазы очень слабо взаи­модействуют с молекулами растворителя.

Для получения золя гидрофобного коллоида необходимо затратить работу (химическую - получение нерастворимого ве­щества в ходе реакции, или физическую - растирания и др.).

Коллоидные растворы обнаруживают ярко выраженные оптические свойства. Простое наблюдение показывает, что рас­творы лиофильных коллоидов всегда мутные (раствор желатина, альбумина и др.), а растворы лиофобных коллоидов почти всегда имеют окраску (гидрозоль гидроокиси железа - красно-коричневую; гидрозоль берлинской лазури - синюю).

Было установлено, что при прохождении света через кол­лоидный раствор, коллоидные частицы рассеивают свет и тем больше, чем больше их число и сильнее интенсивность света. Этот эффект получил название конуса Тиндаля, а интенсивность свечения выражается законом Рэлея:

I = I0 k

 

где I - интенсивность рассеянного света; Iо - интенсивность па­дающего света; k - константа, зависящая от разности показателей преломления дисперсной фазы и дисперсионной среды; n - число частиц в единице объема, т.е. концентрация частиц золя; V-объём частицы дисперсной фазы; λ - длина волны падающего света.

Конус Тиндаля в коллоидном растворе является выражени­ем эффекта светорассеяния. Светорассеяние достигается только тогда, когда величина частицы, рассеивающей свет, начинает приближаться к величине длины световой волны. Истинные растворы таким свойством не обладают. По этому свойству легко отличить истинные растворы от коллоидных.

Так как молекулы некоторых веществ по своим размерам могут быть близки к размерам коллоидных частиц, то с этой точ­ки зрения трудно провести резкую границу между истинными и коллоидными растворами. Все же между ними имеется сущест­венное различие: в то время как истинные растворы - термодинамически устойчивые системы, устойчивость коллоид­ных растворов с большей или меньшей скоростью меняется во времени.

Коллоидные растворы представляют собой гетерогенные системы, что и служит одной из причин их неустойчивости. Кол­лоидные растворы обладают большой свободной энергией поверхности и в соответствии со вторым началом термодинамики стремятся к равновесному состоянию, характеризующемуся разделением сис­темы на две фазы, имеющие минимальные межфазовые поверх­ности и, следовательно, минимальную свободную поверхност­ную энергию.

Устойчивость характеризуется длительностью нахождения системы в неизменном состоянии. Различают кинетическую и агрегативную устойчивость коллоидных систем.

Кинетическая устойчивость характеризуется временем со­хранения равномерного распределения частиц дисперсной фазы по всему объёму дисперсионной среды.

Агрегативная устойчивость характеризуется временем со­хранения неизменной степени дисперсности (раздробления час­тиц) дисперсной фазы коллоидной системы.

С помощью ультрамикроскопа было установлено, что кол­лоидные частицы находятся в интенсивном броуновском движе­нии. Чем мельче частицы, тем интенсивнее движение, и наоборот, чем крупнее - тем меньше скорость их движения. Одновременно с этим частицы находятся под влиянием силы земного притяжения.

Таким образом, коллоидные частицы находятся под воз­действием двух взаимно противоположных сил: броуновского движения, стремящегося равномерно распределить частицы по всему объему дисперсионной среды, и силы тяжести, стремящей­ся собрать эти частицы на дне сосуда. Чем крупнее частицы, тем сильнее проявляется действие земного тяготения, тем скорее они отделяются от дисперсионной среды и тем меньше их кинетиче­ская устойчивость.

В природе коллоидные системы образуются двумя путями: конденсационным и дисперсионным. Воспроизведение этих путей и лежит в основе методов получения коллоидов.

В первом случае коллоиды получаются за счет соединения (конденсации) ионов или молекул с образованием более крупных частиц. Причиной вызывающей образование таких частиц является пересыщенное состояние данного вещества в среде другого вещества, в котором первое находится в растворенном состоянии. Так, например, при понижении температуры воздуха, насыщенного водяными пара­ми, создается пересыщение, которое сопровождается образовани­ем тумана; при сливании спиртового раствора канифоли с водой, образуется золь мастики, так как канифоль трудно растворяется в воде и вследствие этого образуются частицы канифоли коллоид­ных размеров.

Во втором случае - коллоиды образуются за счет раздроб­ления (диспергирования) крупных частиц до частиц коллоидных размеров. Так, например, для раздробления глинистых минералов применяют шаровые мельницы, представляющие собой эксцен­трически вращающиеся барабаны из прочной стали, частично заполненные шарами из того же материала.

Так как почвы в большинстве случаев представляют собой мелкие комочки из слипшихся между собой отдельных частиц, в том числе и коллоидных, то для разделения их на отдельные бо­лее мелкие частицы применяют химический метод раздробления. В этом случае в качестве реагента обычно употребляют растворы различных солей натрия и щелочей. Такой метод раздробления получил название пептизации.

Полученные коллоидные растворы очищают от примесей электролитной природы посредством диализа. Диализ основан на способности полупроницаемых мембран пропускать частицы ис­тинных растворов и не пропускать коллоидные частицы, по­скольку размер пор полупроницаемой мембраны меньше чем d частицы. Диализ продолжают до отсутствия качественной реакции на определяемые ионы или молекулы. Другим методом очистки коллоидных растворов является ультрафильтрация.