Получение щелочных металлов
Основным способом получения щелочных металлов является электролиз расплавов их соединений. Для получения лития электролизу подвергают расплав эвтектическуй смеси хлоридов лития и калия. Натрий получают электролизом расплава хлорида или гидроксида, калий - электролизом расплава смеси хлоридов натрия и калия. Смеси солей используют для понижения температуры электролиза. Реакции электролиза хлоридов и гидроксидов в общем виде выглядят так:
2Ме Cl = 2Ме + Cl 2
4Ме OH = 4Ме + 2Н2О + О2
Кром e электролиза щелочные металлы можно получить и восстановлением оксидов и гидроксидов, например оксид лития восстанавливают кремнием при нагревании:
2 Li 2 O + Si = Li + SiO 2
Расплавленный гидроксид калия восстанавливают жидким натрием:
KOH + Na = N а OH + K
Гидроксиды рубидия и цезия восстанавливают металлическим кальцием в вакууме при нагревании:
RbOH + Ca = Rb + CaO
CsOH + Ca = Cs + CaO
43. К d -элементам относят те элементы, атомы которых содержат валентные электроны на (n – 1)d ns-уровнях и составляют побочные (IIIВ–VIIВ, IВ, IIВ) подгруппы, занимая промежуточное положение между типичными s-металлами (IА, IIА) и p-элементами. Из 109 элементов периодической системы 37 относятся к d-элементам; из них последние 7 радиоактивны и входят в незавершенный седьмой период. Электронное строение атомов d-элементов определяет их химические свойства. 3d-Элементы по химическим свойствам существенно отличаются от 4d- и 5d-элементов. При этом элементы IVВ–VIIВ подгрупп очень схожи по многим химическим свойствам. Это сходство обусловлено лантаноидным сжатием , которое из-за монотонного уменьшения радиусов при заполнении 4f-орбиталей приводит к практическому совпадению радиусов циркония и гафния, ниобия и тантала, молибдена и вольфрама, технеция и рения. Элементы этих пар очень близки по физическим и особенно по химическим свойствам; первые шесть элементов встречаются в одних рудных месторождениях, трудно разделяются; их иногда называют элементами-близнецами.
Атомы d-элементов характеризуются общей электронной формулой (n – 1)d1–10ns0–2. Некоторые из тяжелых d-элементов не являются полными электронными аналогами.
Окислительно-восстановительные свойства соединений d-элементов подобны таковым для соединений главных подгрупп: высшие оксиды – окислители, низшие – восстановители, промежуточные проявляют окислительно-восстановительную двойственность.
В соответствии с кислотно-основными свойствами гидроксидов d-элементов, которые были рассмотрены ранее, низшие оксиды обычно проявляют основные свойства, высшие – кислотные свойства, а промежуточные нередко бывают амфотерными. Например, MnO является основным оксидом (Mn(OH)2, MnCl2 и т. д.), Cr2O3и MnO2 – амфотерны (CrCl3 и KCrO2 – хромит, MnCl4 и CaMnO3 – манганит), а для CrO3 и Mn2O7 характерны исключительно кислотные свойства (K2CrO4 – хромат, KMnO4 – перманганат).
Кислородные соединения d-элементов представляют большой практический интерес, так как получение свободных металлов часто осуществляется через их оксиды. Многие оксиды – тугоплавкие вещества. Из оксида циркония (Tпл = 2550 ºC) изготовляют жаропрочные изделия: тигли, трубки, футеровку высокотемпературных печей. Среди высших оксидов встречаются диэлектрики, полупроводники и твердые электролиты. Некоторые сложные комбинации оксидов d-элементов применяются как ферромагнетики, выгодно отличающиеся от ферромагнитных сплавов металлов гораздо меньшей электропроводностью.
44. Лантаноиды . Семейство из 14 элементов (4f-элементы), следующих за La, общий символ Ln. Электронные конфигурации Ln отражают внутреннюю периодичность, проявляющуюся в некоторых свойствах Ln3+, у которых 4f-орбитали заполняются сначала по одному (подсемейство церия: Ce – Gd), а потом по второму электрону (подсемейство тербия: Tb – Lu). Уменьшение атомных и ионных радиусов приводит к лантаноидному сжатию, вследствие которого элементы, следующие за Lu, по своим свойствам оказываются очень похожими на своих предшественников по группам (Zr и Hf, Nb и Ta, Mo и W, Tc и Re). Cеребристо-белые металлы, тускнеющие во влажном воздухе, при нагревании разлагают воду, взаимодействуют со всеми кислотами (кроме H3PO4 и HF), образуя преимущественно ионы Ln3+, другие степени окисления свойственны Ce, Pr, Tb, Dy (4+), Sm, Eu, Tm, Yb (2+). С H, B, C, N, O, халькогенами, галогенами образуют вполне устойчивые соединения. По химическим свойствам достаточно схожи, разделяют ионообменной хроматографией и экстракцией. Разделенные Ln3+ используют для получения химических соединений с нужными люминесцентными, спектроскопическими и магнитными свойствами, изготовления неодимовых стекол (лазеры), люминесцентных преобразователей (приборы ночного видения), изготовления постоянных магнитов (SmCo5). Основная доля используется в виде смесей металлов или оксидов и других соединений с природным содержанием Ln для изготовления катализаторов, легирующих добавок в металлургии, полировочных паст, аккумуляторов газообразного водорода (LnNi5) и др.
Актиноиды . Семейство из 14 элементов, следующих за Ac, (5f-семейство), общий символ An. Первые три – Th, Pa, U – встречаются в природе, их наиболее долгоживущие изотопы – 232Th (T1/2 = 1,4·1010 лет), 231Pa (T1/2 = 3,43·104 лет), 238U (T1/2 = 4,5·109 лет). Остальные An были получены ядерным синтезом в лабораториях США и России, все радиоактивны. Делятся на два подсемейства Th – Cm (цискюриды) и Bk – Lr (транскюриды). Первое подсемейство во многом отличается от соответствующих лантаноидов, проявляя помимо An3+ и более высокие степени окисления An4+ (Th, Pa, Am, Cm), An4+, 5+, 6+ (U, Np, Pu) и даже Pu7+. Второе подсемейство по химическим свойствам ближе к соответствующим лантаноидам, хотя для менделевия известны соединения Md1+, а для лоуренсия – Lr4+.