Механические колебания
Основные формулы
Всякое колебательное движение, в том числе и гармоническое, характеризуется амплитудой , периодом колебаний
, частотой
, циклической (круговой) частотой
и фазой колебаний
.
Амплитудой называют наибольшее значение колеблющейся величины.
Число полных колебаний в единицу времени называют частотой:
.
Циклическая (круговая) частота - это число полных колебаний в течении с:
.
Периодом называю время, в течении которого совершается одно полное колебание:
.
Смещение, скорость и ускорение при гармоническом колебании определяются уравнениями
,
,
.
Здесь - фаза колебаний, а
- начальная фаза.
Сила, действующая на тело при свободном гармоническом колебании (квазиупругая сила), всегда пропорциональна смещению и направлена в сторону, противоположную смещению:
где - коэффициент квазиупругой силы, измеряемый силой, вызывающей смещение
, равное единице.
При отсутствии сопротивления среды циклическая частота свободных гармонических колебаний, называемых собственной циклической частотой и период
равны:
,
Период колебания математического маятника длиной равен
.
Период колебаний физического маятника
,
где - момент инерции маятника относительно оси качаний,
- расстояние от оси его до центра тяжести.
Полная энергия тела, совершающего гармонические колебания, постоянна и равна
.
Уравнение смещения в затухающих колебаниях при наличии силы сопротивления пропорциональной скорости (
, где
- коэффициент сопротивления) имеет вид:
.
Здесь - убывающая по времени амплитуда смещения;
- коэффициент затухания;
- циклическая частота;
- начальные амплитуда и фаза, определяются из начальных условий.
Величины и
выражаются через параметры системы
формулами:
,
.
Логарифмический декремент затухания
,
где - амплитуды двух последовательных колебаний.
Амплитуда вынужденных колебаний
,
где - есть отношение амплитуды вынуждающей силы к массе тела;
- собственная циклическая частота;
- циклическая частота вынуждающей силы.
Резонансная циклическая частота равна
.
Электромагнитные волны:
1
Уравнение Бернулли — для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.
Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости или газа.
Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.
Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится :
Из Уравнения Бернулли можно сделать один важный вывод. При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление
падает.
Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (Уравнение Бернулли), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.
2
точки зрения механики, жидкостью называется вещество, в котором в равновесии отсутствуют касательные напряжения. Если движение жидкости не содержит резких градиентов скорости, то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры, то можно пренебречь и теплопроводностью, что и составляет приближение идеальной жидкости. В идеальной жидкости, таким образом, рассматриваются только нормальные напряжения, которые описываются давлением. В изотропной жидкости, давление одинаково по всем направлениям и описывается скалярной функцией
Идеа́льная жи́дкость — в гидродинамике — воображаемая несжимаемая жидкость, в которой отсутствуют вязкость и теплопроводность. Так как в ней отсутствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.
Моделью идеальной жидкости пользуются при теоретическом рассмотрении задач, в которых вязкость не является определяющим фактором и ею можно пренебречь. В частности, такая идеализация допустима во многих случаях течения, рассматриваемых гидроаэромеханикой, и даёт хорошее описание реальных течений жидкостей и газов на достаточном удалении от омываемых твёрдых поверхностей и поверхностей раздела с неподвижной средой. Математическое описание течений идеальных жидкостей позволяет найти теоретическое решение ряда задач о движении жидкостей и газов в каналах различной формы, при истечении струй и при обтекании тел.
Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ икинематический коэффициент вязкости ν.
Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см2=1 г/(см·с). Сотая доля пуаза носит название сантипуаз (сП): 1 сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м2; в системе СИ - Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м2=0,1 Па·с; 1 кгс·с/м2=98,1 П=9,81 Па·с.
Кинематический коэффициент вязкости
ν=μ/ρ,
Единицей кинематического коэффициента вязкости в системе СГС является стокc (Ст), или 1 см2/с, а также сантистокс (сСт): 1 сСт=0,01 Ст. В системах МКГСС и СИ единицей кинематического коэффициента вязкости является м2/с: 1 м2/с=104Ст.
Вязкость жидкости с повышением температуры уменьшается. Влияние температуры на динамический коэффициент вязкости жидкостей оценивается формулой μ = μ0·ea(t-t0), где μ = μ0 - значения динамического коэффициента вязкости соответственно при температуре t и t0 градусов; а - показатель степени, зависящий от рода жидкости; для масел, например, значения его изменяются в пределах 0,025—0,035.
Для смазочных масел и жидкостей, применяемых в машинах и гидросистемах, предложена формула, связывающая кинематический коэффициент вязкости и температуру:
νt=ν50·(50/t0)n,
где νt - кинематический коэффициент вязкости при температуре t0;
ν50 - кинематический коэффициент вязкости при температуре 50 0С;
t - температура, при которой требуется определить вязкость, 0С;
n - показатель степени, изменяющийся в пределах от 1,3 до 3,5 и более в зависимости от значенияν50.
С достаточной точностью n может определяться выражением n=lgν50+2,7. Значения n в зависимости от исходной вязкости ν при 50 0С приведены далее в таблице
Значения динамического и кинематического коэффициентов вязкости некоторых жидкостей приведены далее в таблице
Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.
Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:
Коэффициент вязкости (коэффициент динамической вязкости, динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что
будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:
Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение
где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.
Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.
Значение коэффициентов кинематической и динамической вязкости пресной воды