Специализированные сервомашинки

Помимо сервомашинок общего применения, выпускаются и специализированные изделия. Прежде всего, это сервомашинки для уборки-выпуска шасси на летающих моделях:

Эти сервомашинки имеют гораздо большее передаточное отношение редуктора, из-за чего они намного медленнее и имеют больший крутящий момент, в сравнении с обычными. Диапазон угла поворота их качалки также больше: 150-180 градусов. Усилие удержания у них, как правило, больше прочности качалки. Есть два варианта электроники таких сервомашинок, обычная пропорциональная с потенциометром обратной связи и дискретная. В последнем случае качалка имеет только два фиксированных положения во включенном состоянии.

Для управления парусами яхт используются шкотовые лебедки, представляющие собой сервомашинку с многооборотным выходным валом. Вместо качалки на валу закреплен шкотовый барабан:

Мощность мотора такой лебедки много больше и питаются они часто от специального шкотового аккумулятора повышенного напряжения. Диапазон поворота барабана 3 - 5 полных оборотов. Для регулирования усилия на шкоте используют сменные барабаны разного диаметра.

К специализированным сервомашинкам можно отнести изделия для автомоделей среднего и крупного масштаба. От обычных их отличает повышенная мощность мотора, питание от силового аккумулятора и высокая прочность механики к ударным нагрузкам.

Основные характеристики сервомашинок

Базовыми техническими характеристиками сервомашинок являются момент на выходном валу и скорость поворота качалки. Момент измеряют в кг/см (хотя по системе СИ надо бы в Н/метр). Момент в 3 кг/см означает, что сервомашинка будет тянуть тягу, шарнирно закрепленную на качалке в 1 сантиметре от ее оси с силой в 3 кг. Соответственно, если тягу закрепить на качалке в 2 сантиметрах от оси, то сила составит только 1,5 кг. То есть, произведение силы в кг на плечо качалки в см - это и есть момент.

 

 

Для мощных сервомашинок помимо крутящего момента указывают еще момент силового удержания, который намного больше. При повороте силы трения в редукторе мешают мотору, поэтому и момент меньше. А при силовом удержании силы трения редуктора работают совместно с мотором, поэтому этот момент больше. Кстати, разделив разность этих моментов пополам, можно оценить потери редуктора на трение в конкретной сервомашинке.

Англо-американский мир, к сожалению, пьет пиво не литрами, как мы, а пинтами. Соответственно и момент сервомашинок они измеряют не в кг/см, а в oz.-in, то есть в унциях на дюйм. Учитывая, что в дюйме 2,54 сантиметра, а унция тянет на 28,35 грамм, можно посчитать, что момент в 3 кг/см эквивалентен 41,66 oz.-in. Неудобно, конечно, пересчитывать, но что делать?

Скорость поворота качалки оценивают по времени, требуемом для ее поворота на определенный угол. Например, 0,20с/60градусов. Слава создателю, англо-американский мир не придумал ничего вместо секунд и градусов. Эту характеристику пересчитывать не надо. Разные производители указывают разные углы поворота качалки, зачастую по рекламным соображениям. Согласитесь, что 0,15с/45градусов выглядит более привлекательно, чем 0,20с/60градусов, а ведь это одно и тоже.

В школе по физике вы проходили, что произведение момента на угловую скорость это мощность. В нашем случае - мощность мотора сервомашинки, за вычетом потерь в редукторе. Какая же мощность, и для каких применений нужна? Пример силового расчета сервомашинки для самолета приведен во второй половине статьи. Здесь приведена лишь как ориентир стандартная сервомашинка, типичные характеристики которой даны выше в качестве примеров. Таких машинок хватает для большинства начинающих моделистов и их моделей. К тому же они самые дешевые.

Чаще всего, сервомашинки питаются тем же напряжением, что и приемник на модели - 4,8 вольт от батареи из четырех NiCd или NiMH аккумуляторов. Очень многие сервомашинки (но не все!) можно питать от повышенного напряжения в 6 вольт от батареи из пяти аккумуляторов. При этом мощность мотора возрастает (она пропорциональна квадрату напряжения). Соответственно, момент на выходном валу возрастает, а время поворота качалки- снижается, то есть сервомашинка становится более скоростной. Производители часто указывают момент и время поворота для обоих питающих напряжений. Повышение напряжения питания, если это разрешено производителем, как правило, ресурс сервомашинки заметно не снижает. Для некоторых изделий производитель не рекомендует, или даже запрещает использование повышенного напряжения питания. Почему, - мы рассмотрим ниже.

Управляющая электроника потребляет незначительный ток: 8-10 мА. Вроде немного. Но шесть сервомашинок на планере за час парения с неподвижными рулями (в жизни так не бывает!) сожрут 60 мА/часов. Этот расход тоже надо учитывать. В момент поворота с усилием, близким к максимальному мотор потребляет, в зависимости от мощности 0,5 - 2 ампера. Это потребление сильно зависит от потерь в силовой проводке от качалки сервомашинки до руля. В том числе, и от потерь в петлях руля. Широко распространенные боудены - гибкая тяга (трос) в оболочке при ее значительных изгибах могут стать виновником стремительной разрядки бортового аккумулятора. Его энергия через мотор сервомашинки пойдет на преодоление трения в боудене. При питании сервомашинки повышенным напряжением растет также и потребляемый ее мотором ток. Это также надо учитывать при определении необходимой емкости бортового аккумулятора. Еще для оценки энергопотребления важно учитывать, в каком режиме находится сервомашинка с неподвижным рулем. Если в статике, - то мотор не потребляет тока. А вот если в режиме силового удержания, - то тут аккумулятор разряжается тоже очень быстро. Это характерно для тугого руля с пружинящей тягой.

Несколько слов про питание сервомашинок на моделях с электроприводом. На них часто отсутствует отдельный аккумулятор для питания приемника и сервомашинок. Вместо него в регулятор хода встраивают стабилизатор бортового питания - ВЕС-система, который напряжение ходового аккумулятора преобразует в пятивольтовое питание. С одной стороны это удобно, нет лишнего веса. Но в этом случае надо осторожно подходить к применению на модели мощных сервомашинок, особенно цифровых. Дело в том, что нагрузочная способность ВЕС-стабилизатора, как правило, невелика, от 1,5 до 3 ампер, что обусловлено применением в ВЕС обычного параметрического стабилизатора. Теперь представим, что на модели стоит три сервомашинки, в пике потребляющие по 1,5 ампера. Тогда даже при 3-амперном ВЕС-стабилизаторе будет провал питающего и приемник (!) напряжения. А это уже чревато потерей модели. Одним из способов обезопасить модель от таких проблем, может служить буферное (резервное) питание бортовой электроники от отдельного миниатюрного аккумулятора с развязкой от ВЕС-стабилизатора через диоды Шоттки.

 

И еще. Сервомашинки формата "пико" и "нано" зачастую имеют моторы с КПД, в несколько раз меньшим, чем у обычных сервомашинок. Поэтому, развивая равную мощность с сервомашинкой "микро", 9-граммовая "нано" может потреблять вдвое больший ток. Это стоит учитывать поклонникам сверхлегких летающих моделей.

Помимо момента и скорости поворота качалки сервомашинки характеризуются таким параметром, как точность отработки команды. Подробнее о природе и значении точности сервомашинок описано во второй половине статьи.

 

Подведем краткие итоги того, что было сказано в предыдущих разделах.

1. Габариты рулевых машинок варьируются в зависимости от задач, в которых они используются. Самые распространенные машинки - "стандартные" и "микро". Машинки этих габаритов (формата) позволяют решить большинство задач, с которыми сталкиваются моделисты.

2. Все производители указывают помимо габаритов сервомашинки еще 2 основных параметра: усилие и скорость поворота качалки. Есть еще такое понятие как точность, но явно она обычно не называется.

3. На надежность машинки влияет ее механическая конструкция. Для повышения надежности серво, основную ось ставят на подшипники, а редукторы делают из металла.

4. По исполнению электронной начинки, рулевые машинки бывают обычными и цифровыми. Цифровые машинки позволяют добиться особенно высокой точности управления.

5. Применяя мощные (цифровые) сервомашинки надо позаботиться о достаточном для их энергопотребления питании бортовой электроники.

6. Для дополнительного повышения точности и скорости отработки, в качестве двигателя в сервомашинках могут применяться моторы с полым ротором.