Ионно-плазменное азотирование
Технология насыщения металлических изделий в азотсодержащем вакууме (примерно 0,01 атм.), в котором возбуждается тлеющий электрический разряд. Анодом служат стенки камеры нагрева, акатодом — обрабатываемые изделия. Для управления структурой слоя и механическими свойствами слоя применяют (в разные стадии процесса):
- изменение плотности тока
- изменение расхода азота
- изменение степени разряжения
- добавки к азоту особочистых технологических газов:
- водорода
- аргона
- метана
- кислорода.
Азотирование из растворов электролитов
Использование анодного эффекта для диффузионного насыщения обрабатываемой поверхности азотом в многокомпонентных растворах электролитов, один из видов скоростной электрохимико-термической обработки (анодный электролитный нагрев) малогабаритных изделий. Анод-деталь при наложении постоянного напряжения в диапазоне от 150 до 300 В разогревается до температур 450—1050 °C. Достижение таких температур обеспечивает сплошная и устойчивая парогазовая оболочка, отделяющая анод от электролита. Для обеспечения азотирования в электролит кроме электропроводящего компонента вводят вещества-доноры, обычно нитраты.
Оборудование для азотирования
Для проведения газового азотирования используются преимущественно шахтные, ретортные и камерные печи. Для подготовки аммиака перед подачей в печь используется диссоциатор.
Для проведения каталитического газового азотирования используются преимущественно шахтные, ретортные и камерные печи, оснащенные встроенными катализаторами и кислородными зондами для определения насыщающей способности атмосферы.
Для проведения процессов ионно-плазменного азотирования применяются специализированные установки, в которых происходит нагрев изделий за счёт катодной бомбардировки и, собственно, насыщение.
Для азотирования из растворов электролитов применяются установки для электрохимико-термической обработки.
Свойства азотированных металлических поверхностей
- Стали
- Штамповые стали
- Среднелегированные конструкционные стали
- Инструментальные стали
- Чугун
- Титановые сплавы
Хромирование
Описание процесса
Твердое хромирование
Деталь, подвергаемая хромированию, как правило, проходит через следующие шаги:
- Очистка для удаления сильных загрязнений.
- Тонкая очистка, для удаления следов загрязнений.
- Предварительная подготовка (варьируется в зависимости от материала основы).
- Помещение в ванну с насыщенным раствором и выравнивание температуры.
- Подключение тока и выдержка до получения нужной толщины
Используемые при хромировании реагенты и отходы процесса чрезвычайно токсичны, в большинстве стран этот процесс находится под строгим регулированием.
Промышленное применение
Хромированный колёсный диск
В промышленности хромирование используется для снижения трения, повышения износостойкости, повышения коррозионной стойкости. Этот процесс обеспечивает повышенную устойчивость стали к газовой коррозии (окалиностойкость) при температуре до 800 °C, высокую коррозионную стойкость в таких средах, как вода, морская вода и азотная кислота. Хромирование сталей содержащих свыше 0,3—0,4 %С, повышает также твёрдость и износостойкость. Твердость хрома составляет от 66 до 70 HRC. Толщина хромового покрытия обычно составляет от 0,075 до 0,25 мм, но встречаются и более толстые, и более тонкие слои. Поверхностные дефекты при хромировании усиливаются и поверхность подлежит последующей обработке, так как хромирование не дает эффекта выравнивания.[1]
Хромирование используют для деталей паросилового оборудования, пароводяной арматуры, клапанов, вентилей патрубков, а также деталей, работающих на износ в агрессивных средах.
Технология
Типичными являются следующие растворы для хромирования:
1. Шестивалентный хром, чей основной ингредиент — хромовый ангидрид.
2. Трехвалентный хром, чей основной ингредиент — Сульфат хрома или хлорид хрома. Ванны с трехвалентным хромом используются довольно редко из-за ограничений, накладываемых на цвет, яркость и толщину покрытия.
Типичное содержание ванны с шестивалентным хромом:
- Хромовая кислота: 225—300 g/l
- Серная кислота: 2.25—3.0 g/l,
- Температура: 45 — 60 °C
- Сила тока: 1.55—3.10 кА/кв.м. DC
- Аноды: свинец, содержащий до 7 % олова или сурьмы
Ограничения
После того, как шестивалентный хром в 90-е годы ХХ века был признан канцерогеном, в различных странах началась разработка методик его замены. Так, в США и Канаде начала работу Hard Chrome Alternetive team, HCAT. В 2003 году была принята и в 2006 году вступила в силу директива RoHS, которая существенно ограничила применение хромирования в Европе. Результатом стала замена хромирования на другие способы обработки, например, высокоскоростное газопламенное напыление во многих применениях.