Глава II. Древний Восток

1. В течение пятого, четвертого и третьего тысячелетия до н. э. новые и более совершенные формы общества складывались на основе упрочившихся общин нового каменного века, существовавших на берегах, великих рек Африки и Азии в субтропическом поясе и вблизи него. Эти реки – Нил, Тигр и Евфрат, Инд, позже – Ганг, Хуанхэ, еще позже – Янцзы.

Прибрежные земли в районах этих рек могли давать обильные урожаи при условии регулирования разливов и осушения болот. В противоположность бесплодным пустыням и горным областям и равнинам, примыкавшим к этим речным долинам, последние можно было сделать райским местом. И в течение столетий такую задачу удалось решить путем постройки валов и плотин, создания сети каналов и водохранилищ. Регулирование водоснабжения потребовало совместных усилий населения обширных районов в размерах, значительно превосходивших то, что предпринималось в этом роде раньше. Это повело к установлению централизованного управления, сосредоточенного в городских центрах, а не в варварских селениях предшествующих эпох. Сравнительно большие излишки, которые давало значительно усовершенствованное и интенсивное земледелие, повысили уровень жизни населения в целом, заодно это создало городскую аристократию во главе с могущественными вождями. Возникло немало профессий и специальностей – их представляли ремесленники, солдаты, писцы и жрецы. Руководство общественными работами находилось в руках бессменных должностных лиц – группы людей, сведущих в смене времен года, движении небесных тел, в деле землеустройства, хранения запасов пищи и взимания налогов. Пользовались письменностью, чтобы придать форму закона требованиям администрации и действиям правителей. Чиновники, равно как и ремесленники, накопили значительный запас технических знаний, включая сюда металлургию и медицину. В состав этих знаний входило и искусство счета и измерения.

Теперь уже прочно сложились общественные классы. Это были вожди («цари»), самостоятельные землевладельцы и арендаторы, ремесленники, писцы и чиновники, крепостные и рабы. Местные вожди стали настолько богаче и сильнее, что их уже нельзя было считать чем-то вроде феодалов с ограниченной властью, – они становились вполне самодержавными царями. Раздоры и войны между различными деспотами приводили к возникновению более обширных владений, управляемых единым монархом. Так эти общественные формы, в основе которых лежало орошаемое и интенсивное земледелие, дали некий «восточный» вид деспотизма. Такой деспотизм мог держаться столетиями и затем пасть, то ли под ударами горных племен или кочевников пустыни, привлеченных богатствами речной долины, то ли из-за того, что запущенной оказывалась обширная, сложная и жизненно необходимая оросительная система. При таких обстоятельствах власть в племени либо переходила от одного царя к другому, либо же сообщество распадалось на меньшие объединения, причем процесс слияния мог затем начаться заново. Впрочем, при всех этих династических переворотах и повторных переходах от раздробленности к абсолютному деревни, составлявшие основу этого общества, собственно оставались незатронутыми и, стало быть, экономический и общественный строй в основном сохранялся. Восточное общество жило циклами, и даже сейчас в Азии и Африке есть много общин, сохранявших в течение тысячелетий один и тот же уклад жизни. В этих условиях продвижение вперед было медленным и извилистым, и периоды культурного подъема разделялись столетиями застоя и упадка.

Такая статичность Востока создавала некую исконную освященность его установлений, и это облегчало отождествление церкви и государственного аппарата. Чиновничество в значительной своей части было религиозного склада, как и государство в целом; во многих восточных странах жрецы были правителями областей. А так как заниматься наукой было задачей чиновничества, то во многих (но не во всех) восточных странах жрецы занимали выдающееся положение как обладатели научных знаний.

2. Восточная математика возникала как прикладная наука, имевшая целью облегчить календарные расчеты, распределение урожая, организацию общественных работ и сбор налогов. Вначале, естественно, главным делом были арифметические расчеты и измерения. Однако в науке, которую столетиями культивировали специалисты, чьей задачей было не только ее применение, но и посвящение в ее тайны, должен был развиться абстрактный уклон. Постепенно наукой стали заниматься ради нее самой. Из арифметики выросла алгебра не только потому, что это облегчало практические расчеты, но и в результате естественного развития науки, культивируемой и совершенствуемой в школах писцов. В силу тех же причин из измерений возникли начатки (но не больше) теоретической геометрии.

Хотя торговля и процветала в этих обществах древнего Востока, их экономическая сердцевина оставалась земледельческой, хозяйственной основой были села, обособленные и консервативные. Это приводило к тому, что различные культуры оставались резко отличными одна от другой, вопреки сходству экономического строя и одинаковому в основном уровню научных сведений. Замкнутость китайцев и египтян вошла в поговорку. Никогда не составляло труда отличить друг от друга искусство и письменность Египта, Месопотамии, Китая, Индии. Точно так же мы можем говорить о египетской, месопотамской, китайской и индийской математике, хотя в общем по своей арифметико-алгебраической природе они весьма схожи. Даже если наука одной из этих стран в течение некоторого периода обгоняла науку другой, она сохраняла свойственные ей приемы и символику.

На Востоке трудно датировать новые открытия. Статический характер его общественного строя приводил к тому, что научные сведения сохранялись без изменений в точение столетий и даже тысячелетий. Открытия, сделанные в пределах одного городского поселения, могли остаться неизвестными в других местностях. Хранилища научных и технических знаний могли быть уничтожены войнами при смене династий, наводнениями. Предание гласит, что в 221 г. до н.э., когда один абсолютный деспот Цинь Ши-хуанди (династии Цинь, Первый Желтый император) установил свое господство над всем Китаем, он приказал уничтожить все научные книги. Позже многое было вновь записано по памяти, но подобные события весьма затрудняют датировку открытий.

Другая трудность в датировке достижений восточной науки связана с материалом, которым пользовались для их закрепления. Народы Двуречья обжигали глиняные таблички, которые практически были неразрушимы. Египтяне пользовались папирусом, и поэтому значительная часть памятников их письменности сохранилась в условиях сухого климата. Китайцы и индийцы применяли значительно менее надежный материал – древесную кору или бамбук. Китайцы во втором столетии н.э. начали пользоваться бумагой, но мало что сохранилось от тысячелетия, предшествующего семисотому году н. э. Поэтому наши сведения о восточной математике весьма отрывочны, и для столетий догреческой эпохи мы, кроме материалов Египта и Двуречья, почти ничем не располагаем. Вполне возможно, что новые открытия поведут к полной переоценке относительного значения различных форм восточной математики. В течение долгого времени самыми богатыми историческими источниками мы обладали по Египту благодаря открытому в 1858 г. так называемому папирусу Райнда (Rhind), написанному около 1650 г. до н.э., но содержащему значительно более старый материал. За последние двадцать лет наши сведения о вавилонской математике значительно возросли благодаря замечательным открытиям О. Нейгебауера и Ф. Тюро-Дапжена, которые расшифровали большое число глиняных табличек. Теперь выясняется, что вавилонская математика была значительно более развита, чем ее восточные партнерши. Возможно это заключение будет окончательным, так как существует известное соответствие в содержании вавилонских и египетских текстов за ряд столетий. Более того, в экономическом развитии Двуречье ушло дальше, чем другие страны так называемого плодородного пояса на Ближнем Востоке, простиравшегося от Двуречья до Египта. Двуречье было перекрестком многочисленных караванных путей, тогда как Египет находился сравнительно в стороне. К этому надо добавить то обстоятельство, что возделывание почвы в районе блуждающих Тигра и Евфрата требует больше технического искусства и регулировки, чем в районе Нила, этой «самой добропорядочной из всех рек», если воспользоваться выражением Уильяма Уилкокса. Быть может, дальнейшее изучение древнеиндийской математики обнаружит неожиданные достижения, но пока притязания на это не кажутся достаточно обоснованными.

3. Источником большей части наших сведений о египетской математике являются два математических папируса. Один из них – это уже упомянутый папирус Райнда, содержащий 84 задачи, второй – так называемый московский папирус, который, может быть, на два столетия старше и содержит 25 задач. Эти задачи были уже достаточно стары, когда составлялись папирусы, но есть меньшие папирусы значительно более позднего происхождения, даже римских времен, которые не отличаются от названных по своим приемам. Математика, которая в них изложена, основана на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда – системе, которая нам знакома благодаря римским обозначениям, основанным на том же принципе: . На основе такой системы египтяне построили арифметику преимущественно аддитивного характера, т.е. ее основное направление состоит в сведении всех умножений к повторным сложениям. Например, умножение на 13 получается умножением сначала на 2, затем на 4, затем на 8 и сложением результатов умножения на 4 и на 8 с первоначальным числом:

Например, для вычисления писали:

и складывали все числа, отмеченные звездочкой, что дает 143.

Самой замечательной чертой египетской арифметики являются действия с дробями. Все дроби сводятся к суммам так называемых основных дробей, то есть дробей, имеющих числителем единицу. Единственное исключение составляла дробь , для которой существовал специальный символ. Сведение к суммам основных дробей производилось с помощью таблиц, которые давали разложение дробей вида единственное необходимое разложение, так как умножение было двоичным. Папирус Райнда дает таблицу, в которой приведены разложения на основные дроби для всех нечетных от 5 до 331, например

Из чего исходили при таком сведении к основным дробям, не ясно (например, почему заменяется суммой , а не суммой ).

Такие действия с дробями придавали египетской математике тяжеловесность и растянутость, однако разложение на сумму основных дробей применялось в течение тысячелетий, не только в эпоху эллинизма, но и в средние века. В то же время, указанное разложение предполагает определенное, математическое искусство, и существуют интересные теории для объяснения того способа, каким египетские специалисты могли получить свои результаты. Многие задачи очень просты и сводятся к линейному уравнению с одним неизвестным:

Некое количество, его , его и его , сложенные вместе, дают 33. Каково это количество?

Ответ, , записан в основных дробях: . Для неизвестного в уравнении существовал иероглиф, обозначавший «кучу» и произносившийся «хау» или «аха», Поэтому, египетскую алгебру иногда называют «хау-исчислением».

В задачах речь идет о количестве хлеба и различных сортов пива, о кормлении животных и хранении зерна, и это указывает на практическое происхождение такой запутанной арифметики и примитивной алгебры. В некоторых задачах проявляется теоретический интерес, например в задаче, в которой требуется разделить сто хлебов между пятью людьми так, чтобы их доли составляли арифметическую прогрессию и чтобы одна седьмая суммы, трех больших долей была равна сумме двух меньших. Мы даже встречаем геометрическую прогрессию в задаче о семи домах, в каждом из которых есть семь кошек, каждая из которых поедает семь мышей и т. д., что выявляет знание формулы для суммы членов геометрической прогрессии.

Некоторые задачи имеют геометрическую природу и касаются преимущественно измерений. Площадь треугольника находится как половина произведения основания и высоты; площадь круга диаметра определяется как , что дает для значение . Мы находим также некоторые формулы для объемов тел, таких, как куб, параллелепипед и круговой цилиндр, причем все они рассматриваются конкретно как сосуды, преимущественно для зерна. Самым замечательным результатом в египетских измерениях была формула для объема усеченной пирамиды с квадратным основанием где и суть длины сторон квадратов, a – высота. Этот результат, которому не найдено соответствующего ни в какой другой древней математике, особенно примечателен, поскольку нет указаний на то, чтобы египтяне имели какое-либо представление даже о теореме Пифагора, вопреки некоторым необоснованным рассказам о гарпедонафтах, которые якобы строили прямые углы с помощью веревки, имевшей узлов.

Мы здесь должны предостеречь от преувеличения древности египетской математической науки. Строителям пирамид эпохи 3000 лет до н.э. и даже раньше приписывали всевозможные результаты высокоразвитой науки. Существует даже много раз серьезно преподносившаяся версия, будто египтяне в 4212 г. до н.э. приняли так называемый сотический цикл для календаря. Нельзя всерьез приписывать столь точные математические и астрономические работы народу, едва вышедшему из условий каменного века, и источником таких рассказов, как обычно удается установить, является позднее египетское предание, дошедшее до нас через греков. Общей чертой древних цивилизаций является стремление датировать главные сведения весьма ранними эпохами. Все доступные тексты указывают, что египетская математика была скорее примитивного характера. На таком же уровне находилась и их астрономия.

4. Переходя к математике Двуречья, мы оказываемся на гораздо более высоком уровне, чем тот, которого когда-либо достигала египетская математика. Здесь мы можем даже уловить прогресс в ходе столетий. Уже самые древние тексты, относящиеся к последнему шумерскому периоду (третья династия Ура, 2100 г. до н.э.), показывают высокое вычислительное искусство. Эти тексты содержат таблицы для умножения, в которых хорошо развитая шестидесятичная система счисления сочетается с более ранней десятичной системой; здесь имеются клинописные символы, обозначающие 1, 60, 360 и также 60-1, 60-2. Однако не это было наиболее характерной их чертой. В то время как египтяне каждую единицу более высокого разряда обозначали новым символом, шумеры пользовались одним и тем же символом, но указывали его значение его положением. Так, 1, за которой следовала другая 1, давала запись числа 61, а 5 с последующим 6 с последующим 3 (мы это будем записывать как 5, 6, 3) обозначало . Такая позиционная (или поместная) система не отличается, по сути дела, от нашей системы записи чисел, при которой символ 343 заменяет . Подобная система имеет огромное преимущество при вычислениях, что можно сразу увидеть, если попытаться выполнить умножение и в нашей системе, и в системе с римскими цифрами. Позиционная система устраняла многие трудности в арифметике дробей так же, как это происходит при нашей системе с введением десятичных дробей. По-видимому, вся эта система была непосредственным результатом развития техники управления, что засвидетельствовано в тысячах текстов того же периода, где речь идет о поставках скота, зерна и т.п. и о связанных с этим арифметических вычислениях. При таком способе счета существовала некоторая неопределенность, так как значение символа не всегда было ясно по его положению. Так, (5, 6, 3) могло также означать , и точное истолкование надо было извлечь из контекста. Другая неопределенность возникала из-за того, что незаполненное место иной раз означало нуль, так что (11, 5) могло стоять вместо . Иной раз появляется специальный символ для нуля, но не ранее персидской эпохи. Так называемое «изобретение нуля», было, таким образом, логическим следствием введения поместной системы, но только после того, как техника вычислений была значительно усовершенствована.

Как шестидесятичная система, так и позиционность системы счисления оказались прочным достоянием человечества. Наше современное деление часа на 60 минут и 3600 секунд восходит к шумерам, равно как и наше деление окружности на 360 градусов, каждого градуса на 60 минут и каждой минуты на 60 секунд. Есть основания полагать, что выбор в качестве основы 60 вместо 10 появился при попытке унифицировать системы измерения, хотя то обстоятельство, что 60 имеет много делителей, тоже могло иметь значение. Что касается поместной системы, непреходящее значение которой сравнивают со значением алфавита, так как оба изобретения заменяют сложную символику методом, легко доступным широкому кругу людей, то ее история в значительной мере еще темна. Есть основание предполагать, что как индийцы, так и греки познакомились с нею на караванных путях, которые шли через Вавилон. Нам известно также, что арабы говорили о ней как об индийском изобретении. Однако вавилонская традиция могла повлиять на все позднейшее распространение поместной системы.

5. Следующая группа клинописных текстов относится ко времени первой вавилонской династии, когда в Вавилоне правил царь Хаммурапи (около 1950 г. до н.э.) и семитское население подчинило себе исконных жителей – шумеров. В этих текстах мы видим, что арифметика развилась в хорошо разработанную алгебру. Египтяне того же периода были в состоянии решать только простые линейные уравнения, а вавилоняне времен Хаммурапи полностью владели техникой решения квадратных уравнений. Они решали линейные и квадратные уравнения с двумя неизвестными, решали даже задачи, сводящиеся к кубическим и к биквадратным уравнениям. Такие задачи они формулировали только при определенных числовых значениях коэффициентов, но их методы не оставляют никакого сомнения относительно того, что они знали общие правила.

Приведем пример, взятый из одной из глиняных табличек этого периода.

«Площадь , состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям , решение которых сводится к решению квадратного уравнения , имеющему положительный корень .

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д.

Резко выраженный арифметико-алгебраический характер вавилонской математики проявляется и в геометрии. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно является только средством для того, чтобы поставить алгебраический вопрос. Предыдущий пример показывает, как задача относительно площади квадрата приводит к нетривиальной алгебраической проблеме, и этот пример не составляет исключения. Тексты показывают, что вавилонская геометрия семитского периода располагала формулами для площадей простых прямолинейных фигур и для объемов простых тел, хотя объем усеченной пирамиды еще не был найден. Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности. Основной чертой этой геометрии был все же ее алгебраический характер. Это в равной мере относится и ко всем позднейшим текстам, особенно к текстам третьего периода, от которого до нас дошло немалое их число, – эпохи нововавилонской, персидской и эпохи Селевкидов (примерно от 600 г. до н.э. до 300 г.н. ».). Тексты этого последнего периода обнаруживают значительное влияние вавилонской астрономии, которая в это время приобретает характер настоящей науки, что сказывается в тщательном анализе различных эфемерид. Вычислительная техника математических текстов становится еще более совершенной; алгебра справляется с задачами на уравнения, для которых требуется значительное вычислительное искусство. От эпохи Селевкидов дошли вычисления, которые доведены до семнадцатого шестидесятичного знака. Столь сложные вычислительные работы уже нельзя связывать с вычислением налогов или измерением – стимулом для них были астрономические задачи или просто любовь к вычислениям.

Многое в этой вычислительной арифметике выполнялось с помощью таблиц, в наборе которых есть и простые таблицы для умножения, и таблицы обратных величин, квадратных и кубических корней. В одной из таблиц имеется ряд чисел вида , которым, по-видимому, пользовались для решения кубических уравнений вида . В них содержатся некоторые превосходные приближения: для дается ( ), для дается . Видимо, квадратные корни определялись по формуле наподобие следующей:

.

Что касается значения , в большинстве случаев таблички обходятся библейским . Есть указания на то, что применялись и лучшие приближения, дававшие для значение .

Уравнение появляется в задаче, в которой требуется решить систему уравнений , что сводится к уравнению или, согласно таблицам, .

В клинописных текстах есть задачи и на сложные проценты. Например, ставится вопрос, за какое время удвоится сумма денег, ссуженная под 20 (годовых) процентов.

Это приводит к уравнению , которое решается так: сначала замечают, что , а затем применяют линейную интерполяцию. В наших обозначениях

,

что дает для значение 4 года минус (2, 33, 20) месяцев.

По-видимому, одной из особых причин, вызвавших развитие алгебры примерно около 2000 г. до н.э., было то, что новые семитские правители Вавилона использовали прежнее шумерийское письмо. Это письмо, как и иероглифы, было набором идеограмм – каждый знак обозначал отдельное понятие. Семиты воспользовались им для фонетической записи слов своего языка и вместе с тем применяли некоторые знаки в их прежнем значении. Следовательно, эти знаки по-прежнему выражали понятия, но произносились иначе. Такие идеограммы были вполне пригодны для алгебраического языка, подобно нашим современным знакам +, –, ..., которые в действительности тоже идеограммы. В вавилонских школах администраторов этот алгебраический язык стал частью учебной программы на много поколений и, хотя власть переходила в руки новых правителей – касситов, ассирийцев, мидян, персов, эта традиция оставалась в силе.

Самые сложные задачи относятся к более поздним периодам в истории древней цивилизации, а именно, к персидской эпохе и эпохе Селевкидов. В те времена Вавилон уже не был политическим центром, но в течение ряда столетий он оставался интеллектуальной столицей обширной империи, в которой вавилоняне смешались с персами, греками, евреями, индусами и многими другими народами. Но во всех клинописных текстах видна непрерывность традиции, что, вероятно, указывает на местную непрерывность развития.

Можно быть уверенным в том, что этому развитию способствовало взаимно обогащавшее общение с другими цивилизациями. Мы знаем, что вавилонская астрономия этого периода оказала влияние на греческую и что вавилонская математика повлияла на вычислительную арифметику. Есть основания полагать, что вавилонские школы писцов были посредниками между наукой Греции и наукой Индии. Мы всё еще мало осведомлены о роли персидской и селевкидской Месопотамии в распространении древневосточной и античной астрономии и математики, но все доступные данные указывают на то, что эта роль должна была быть значительной. Средневековая арабская и индийская наука опиралась не только на традиции Александрии, но и на традиции Вавилона.

6. Во всей математике Древнего Востока мы нигде не находим никакой попытки дать то, что мы называем доказательством. Нет никаких доводов, мы имеем только предписания в виде правил: «делай то-то, делай так-то». Мы не знаем, как там были получены теоремы, например, как вавилонянам стала известна теорема Пифагора. Было сделано несколько попыток объяснить, как египтяне и вавилоняне получали свои результаты, но все они являются только предположениями. Нам, воспитанным на строгих выводах Евклида, весь этот восточный способ рассуждения кажется на первый взгляд странным и крайне неудовлетворительным. Но такое впечатление исчезает, когда мы уясняем себе, что большая часть математики, которой мы обучаем современных инженеров и техников, все еще строится по принципу «делай то-то и делай так-то», без большого стремления к строгости доказательств. Алгебру во многих средних школах все еще изучают не как дедуктивную науку, а скорее как набор правил. Видимо, восточная математика никогда не могла освободиться от тысячелетнего влияния технических проблем и проблем управления, для пользы которых она и была создана.

7. Вопрос о влиянии Греции, Китая и Вавилона имеет глубокое и определяющее значение для изучения древнеиндийской математики. Коренные ученые Индии и Китая прошлого, а иногда и настоящего времени обыкновенно подчеркивали большую древность их математики, но у них нет математических текстов, которые можно было бы надежно отнести ко времени до н.э. Самые древние индийские тексты относятся, пожалуй, к первым столетиям н.э., самые древние китайские тексты такого же или даже более позднего происхождения. Установлено, что древние индусы пользовались десятичной системой счисления без позиционных обозначений. Такую систему составляли так называемые числа Брахми, имевшие особые знаки для каждого из чисел 1, 2, 3,..., 9, 10; 20, 30, 40,..., 100; 200, 300,..., 1000, 2000, ... . Эти символы – по меньшей мере эпохи короля Ашока (300 лет до н.э.). Затем мы имеем так называемые «Сульвасутры», часть которых давности 500 лет до н.э. или еще древнее; в них изложены математические правила древнего местного происхождения. Мы находим эти правила среди обрядовых предписаний, некоторые из которых относятся к построению алтарей. Мы имеем здесь рецепты для построения квадратов и прямоугольников, выражения для зависимости между диагональю и стороной квадрата и для равновеликости квадратов и кругов. Встречаются частные случаи теоремы Пифагора и некоторые любопытные приближения с помощью «основных» дробей, вроде такого (в наших обозначениях):

;

.

То любопытное обстоятельство, что эти результаты «Сульвасутр» не встречаются в более поздних индийских трудах, показывает, что мы еще не можем говорить применительно к индийской математике о той непрерывности традиции, которая столь типична для математики Египта или Вавилона, и возможно, что в столь большой стране, как Индия, такой непрерывности и не было. Могли быть различные традиции, связанные с различными школами. Мы знаем, например, что джайнизм, религия столь же древняя, как буддизм (около 500 г. до н.э.);, поощрял математические исследования, и в священных книгах джайнизма обнаружено значение для .

8. При изучении древнекитайской математики значительным препятствием является отсутствие переводов, хотя мы благодаря книгам Миками и Нидхема хорошо осведомлены о положении математики в Древнем Китае. Тем, кто знает русский язык, доступен значительно больший материал, имеется даже русский перевод классического математического произведения «Девять книг (разделов) о математическом искусстве» (Цзю чжан суань шу). Как эта книга, так и «Чжоу-би» в своем нынешнем виде дошли до нас от периода династии Хань (206 г. до н.э. – 220 г. н.э.), но в них, конечно, может содержаться материал значительно более раннего происхождения. Книга Чжоу-би только частично посвящена математике, но интересно, что в ней рассматривается теорема Пифагора. Напротив, «Девять книг (разделов)» – чисто математическое произведение, которое вполне характерно для древнекитайской математики следующего тысячелетия, да и более поздней.

Очень стары также некоторые диаграммы из книг периода династии Хань, например из «Книги перемен» (И цзинь, VIII—VII вв. до н.э.). В числе их следующий, связанный со многими легендами, магический квадрат (ло шу):

.

Система счисления у китайцев всегда была десятичной, и уже во втором тысячелетии до нашей эры мы встречаемся с числами, записанными с помощью девяти символов в позиционной системе. Такой способ записи получил права гражданства в период династии Хань или еще раньше. Девять знаков изображались с помощью бамбуковых палочек, по-разному размещенных; например, обозначало число 6729, которое именно таким образом и записывалось. Арифметические действия выполнялись с помощью счетных досок; пропуски, т. е. пустые места, обозначали нуль (специальный знак для нуля появляется только в тринадцатом столетии н.э., хотя он, возможно, и старше).

При календарных расчетах применялось нечто вроде шестидесятичной системы, что можно сопоставить с сочетанием двух связанных друг с другом зубчаток, из которых одна имеет двенадцать зубьев, а другая – десять. Так число шестьдесят стало единицей высшего разряда, «периодом» («Катэйский период» в одном из стихотворений Тенниорна).

Математика «Девяти книг» состоит в основном из задач и общих указаний, как их решать. Эти задачи возникают из практических применений арифметики и сводятся к алгебраическим уравнениям с числовыми коэффициентами. Вычисляются и квадратные, и кубические корни, например число определяется как корень квадратный из . При вычислениях с окружностью принимается . Ряд задач сводится к системам линейных уравнений, например к системе

которая записывается «матрицей» своих коэффициентов. Решение этой системы приводится в таком виде, которое мы теперь назвали бы «матричным преобразованием». Эти матрицы содержат и отрицательные числа, здесь впервые появляющиеся в истории математики.

Китайская математика занимает особое положение – практически до последних лет мы видим в ней непрерывность традиции, так что мы можем выяснить, каково ее место в обществе, более полно, чем в случае египетской и вавилонской математики, принадлежащих исчезнувшим цивилизациям.

Например, мы знаем, что кандидаты, подвергавшиеся экзамену, должны были знать «Десять классиков» в точно определенном объеме и что успех на экзамене определяется в основном умением точно цитировать тексты на память. Таким образом, традиционное учение передавалось из поколения в поколение с обременительной тщательностью. В такой застойной культурной атмосфере новые открытия стали чрезвычайно редким явлением, а это опять-таки обеспечивало неизменность математической традиции. Такая традиция могла передаваться в течение тысячелетий и могла пострадать только иногда, при больших исторических потрясениях.

В Индии существовали аналогичные условия, и там мы находим даже такие математические тексты, которые написаны стихотворными размерами с целью облегчить запоминание. Нет никаких особых причин считать, что приемы, которыми пользовались в древнем Египте и в Вавилоне, могли значительно отличаться от практики Индии и Китая.

Чтобы прервать процесс полного окостенения математики, должна была возникнуть цивилизация совершенно другого рода. Математика достигла, наконец, уровня настоящей науки благодаря тому новому мировоззрению, которое характерно для цивилизации греков.

Глава III. Греция

1. В течение последних столетий второго тысячелетия до н.э. в бассейне Средиземного моря и в прилегающих к нему областях очень многое изменилось в экономике и в политике.

Бронзовый век сменился тем нашим веком, который мы зовем веком железа, и происходило это в смутное время переселений и войн. Лишь немногие частности известны нам об этой революционной эпохе, но мы знаем, что к ее завершению, примерно около 900 г. до н.э., уже не было царства Миноса и Хеттской державы, значительно слабее стали Египет и Вавилон и на исторической сцене появились новые народы. Наиболее выдающимися среди них были евреи, ассирийцы, финикийцы и греки. Вытеснение бронзы железом означало не только переворот а военном деле, но и ускорение роста экономики благодаря удешевлению средств производства, и это сделало возможным более деятельное участие широких слоев общества в делах экономического и общественного значения. Это сказалось и в двух важных новшествах: в замене неудобного письма Древнего Востока легко доступным алфавитом и во введении чеканной монеты, что послужило оживлению торговли. Наступило то время, когда культурные ценности уже не могли дальше оставаться исключительным достоянием восточного чиновничества.

Деятельность «морских разбойников» – так египетские тексты характеризуют некоторые переселявшиеся народы – первоначально сопровождалась немалыми культурными потерями. Критская цивилизация исчезла, египетское искусство пришло в упадок, наука Вавилона и Египта окостенела на столетия. Мы не имеем никаких математических текстов этого переходного периода. Когда положение снова стало устойчивым, Древний Восток оправился, оставаясь в основном верным традиции, но было расчищено место для цивилизации целиком нового склада – греческой цивилизации.

Те города, которые возникли на побережье Малой Азии и в самой Греции, уже не были административными центрами страны оросительного земледелия. Это были торговые города, где феодалы-землевладельцы старого уклада были обречены на поражение в борьбе, которую им довелось вести с независимым, обретшим политическое самосознание классом купцов. В течение седьмого и шестого столетий до н.э. это купечество взяло верх, но ему пришлось в свою очередь вступить в борьбу с мелкими торговцами и ремесленниками, с демосом.

Итогом был расцвет греческого полиса, самоуправляющегося города-государства – новое социальное явление, вполне отличное от ранних городов-государств Шумера и других стран Востока. Наиболее значительные из этих городов-государств сложились в Ионии, на анатолийском берегу. Их растущая торговля связала их со всем побережьем Средиземного моря, с Двуречьем, Египтом, со Скифией и даже более далекими странами. Долгое время ведущее место занимал Милет. Но и города на других берегах: Коринф, позже Афины в собственно Греции, Кротон и Гиарент в Италии, Сиракузы в Сицилии – становились богаче и значительнее. Новый общественный уклад создал новый тип человека. Купец-путешественник никогда еще не пользовался такой независимостью, и он знал, что она добыта в упорной и жестокой борьбе. Он никак не мог разделять устоявшиеся воззрения Востока. Он жил в период географических открытий, сравнимых только с открытиями западноевропейского шестнадцатого столетия, он не признавал ни абсолютного монарха, ни власти, предстающей в виде охранительного божества. А кроме того он мог пользоваться известным досугом благодаря своему богатству и труду рабов. Он мог поразмыслить об окружающем его мире. Отсутствие вполне установившейся религии привело многих обитателей этих прибрежных городов к мистицизму, но это способствовало и противоположному – росту рационализма и научному подходу.

2. Современная математика родилась в этой атмосфере ионийского рационализма – математика, которая ставила не только восточный вопрос «как?», но и современный, научный вопрос «почему?». Согласно преданию отцом греческой математики является милетский купец Фалес, в первой половине шестого века посетивший Вавилон и Египет. Но если он даже целиком легендарная фигура, то за нею стоит нечто вполне реальное. Это – образ, соответствующий тем условиям, в которых закладывались основы не только современной математики, но и всей современной науки и философии. Первоначально греки занимались математикой, имея одну основную цель – понять, какое место занимает во вселенной человек в рамках некоторой рациональной схемы. Математика помогла найти порядок в хаосе, связать идеи в логические цепочки, обнаружить основные принципы. Она была наиболее теоретической из всех наук.

Несомненно, что греческие купцы познакомились с восточной математикой, прокладывая свои торговые пути. Но люди Востока почти не занимались теорией, и греки быстро обнаружили это. Почему в равнобедренных треугольниках два угла равны? Почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах? Такие вопросы естественно возникали у людей, ставивших сходные вопросы в области космологии, биологии и физики.

К сожалению, у нас нет первоисточников, описывающих ранний период развития греческой математики. Уцелевшие рукописи относятся к эпохе христианства и ислама и их только в малой мере дополняют заметки в египетских папирусах несколько более раннего периода. Все же классическая филология дала возможность восстановить тексты, которые восходят к четвертому столетию до н.э. и далее, и мы, благодаря этому, располагаем надежными изданиями Евклида, Архимеда, Аполлония и других великих математиков античности. Но в этих текстах перед нами уже вполне развитая математическая наука, и даже с помощью позднейших комментариев по ним трудно проследить ход исторического развития. Об эпохе формирования греческой математики приходится судить, основываясь лишь на небольших фрагментах, приводимых в более поздних произведениях, и на отдельных замечаниях философов и других не строго математических авторов. Очень много остроумия и труда было вложено в критику текстов, благодаря чему удалось разъяснить немало темных мест в этом раннем периоде. Эта работа, проделанная такими исследователями, как Поль Таннери (Tannery), Хит (Т.L. Heath), Цейтен (Н.G. Zeuten), Франк (Е. Frank); и др., позволяет нам дать в известной мере связную, хотя в значительной части предположительную картину греческой математики в эпоху ее формирования.

3. В шестом столетии до н.э. на развалинах Ассирийской империи возникла новая обширная восточная; держава – Персия Ахеменидов. Она завоевала города Анатолии, но общественный строй греческой метрополии пустил уже глубокие корни и его нельзя было сокрушить. Персидское нашествие было отражено в исторических битвах при Марафоне, Саламине и Платее. Главным результатом греческой победы было расширение и экспансия Афин. Здесь во второй половине пятого столетия, при Перикле, влияние демократических элементов все время возрастало. Они были движущей силой экономической и военной экспансии, и около 430 г. они сделали Афины не только центром Греческой империи, но и центром новой и любопытной цивилизации – золотого века Греции.

В обстановке общественной и политической борьбы философы и наставники излагали свои теории и заодно новую математику. Впервые в истории группа критически мыслящих, «софистов», менее скованная традицией, чем какая-либо иная предшествовавшая ей группа ученых, стала рассматривать проблемы математического характера скорее с целью уяснения их сути, чем ради пользы.

Так как такой подход позволил софистам дойти до основ точного мышления вообще, было бы чрезвычайно поучительно познакомиться с их рассуждениями. К несчастью, от этого периода дошел лишь один цельный математический фрагмент, принадлежащий ионийскому философу Гиппократу из Хиоса. Математические рассуждения в этом фрагменте на весьма высоком уровне, и достаточно типично то, что в нем рассматривается совсем «непрактический», но теоретически существенный вопрос о так называемых луночках – плоских фигурах, ограниченных двумя круговыми дугами.

Этот вопрос – найти площадь таких луночек, у которых площадь рационально выражается через диаметр, – имеет прямое отношение к центральной проблеме греческой математики – квадратуре круга. Анализ этой проблемы у Гиппократа показывает, что у математиков золотого века Греции была упорядоченная система плоской геометрии, в которой в полном объеме применялся принцип логического заключения от одного утверждения к другому («апагоге»). Были заложены основы аксиоматики, на что указывает название приписываемой Гиппократу книги «Начала» («Stoicheia»), название всех греческих аксиоматических трактатов, включая трактат Евклида. Гиппократ исследовал площади плоских фигур, ограниченных как прямыми линиями, так и дугами окружности. Он учит, что площади подобных круговых сегментов относятся, как квадраты стягивающих их хорд. Он знает теорему Пифагора, а также соответствующее неравенство для непрямоугольных треугольников. Весь его трактат уже мог бы быть отнесен к евклидовой традиции, если бы он не был старше Евклида более чем на столетие.

Проблема квадратуры круга – одна из «трех знаменитых математических проблем античности», которые в этот период стали предметом исследования. Эти проблемы таковы:

1) Трисекция угла, то есть разделение любого заданного угла на три части.

2) Удвоение куба, то есть определение ребра такого куба, который имел бы объем, вдвое больший объема заданного куба (так называемая делийская задача).

3) Квадратура круга, то есть нахождение такого квадрата, площадь которого была бы равна площади данного круга.

Значение этих проблем в том, что их нельзя точно решать геометрически с помощью конечного числа построений прямых линий и окружностей, – это можно сделать только приближенно, – вследствие чего эти проблемы стали средством для проникновения в новые области математики. В связи с этими проблемами были открыты конические сечения, некоторые кривые третьего и четвертого порядка и трансцендентная кривая, названная квадратриссой. Мы не должны с предубеждением подходить к вопросу о значении этих проблем из-за того, что иной раз они появлялись в виде анекдота (дельфийские пророчества и т.п.). Не раз случалось, что основной важности вопросы излагали в виде анекдота или головоломки, – вспомним о яблоке Ньютона, о клятвопреступничестве Кардано, о винных бочках Кеплера. Математики разных эпох, включая нашу, показали, какая связь существует между этими греческими проблемами и современной теорией уравнений, связь, затрагивающая вопросы об областях рациональности, алгебраические числа и теорию групп.

4. Вероятно, от группы софистов, которые в некоторой степени были связаны с демократическим движением, отмежевалась другая группа философов с математическими интересами, примыкавшая к аристократическим объединениям. – Они называли себя пифагорейцами в честь основателя этой школы Пифагора, который, предположительно, был мистиком, ученым и. государственным деятелем аристократического толка. Софисты в большинстве подчеркивали реальность изменений, пифагорейцы стремились найти в природе и обществе неизменное. В поисках вечных законов вселенной они изучали геометрию, арифметику, астрономию и музыку («квадривий»). Самым выдающимся их представителем был Архит из Тарента, который жил около 400 г. до н.э. и школе которого, если мы примем гипотезу Франка (Е. Frank), следует приписать большую часть «пифагорейской» математики. Арифметика пифагорейцев была в высшей степени спекулятивной наукой и имела мало общего с современной ей вычислительной техникой Вавилона. Числа разбивались на классы: четные, нечетные, четно-четные, нечетно-нечетные, простые и составные, совершенные, дружеские, треугольные, квадратные, пятиугольные и т, д. Некоторые из наиболее интересных результатов получены для «треугольных чисел», связывающих арифметику и геометрию: и т.д.

Наш термин «квадратные числа» идет от построений пифагорейцев: и т.д.

Сами фигуры значительно старше, ведь некоторые из них мы находим в неолитической керамике. Пифагорейцы же исследовали их свойства, внесли сюда налет своего числового мистицизма и сделали числа основой своей философии вселенной, пытаясь свести все соотношения к числовым» («все есть число»). Точка была «помещенной единицей».

Пифагорейцам были известны некоторые свойства правильных многоугольников и правильных многогранников.

Они показали, как заполнить плоскость системой правильных треугольников, или квадратов, или правильных шестиугольников, а пространство – системой кубов. Впоследствии Аристотель пытался дополнить это неверным утверждением, что пространство можно заполнить правильными тетраэдрами. Возможно, что пифагорейцы знали правильный октаэдр и додекаэдр – последнюю фигуру потому, что находимые в Италии кристаллы пирита имеют форму додекаэдра, а изображения таких фигур в орнаментах или как магический символ относится еще ко временам этрусков. Они восходят к кельтским племенам Центральной Европы начала эпохи железного, века (ок. 900 г. до н.э.) и позже (пирит был источником железа).

Что касается теоремы Пифагора, пифагорейцы приписывали ее своему наставнику и передавали, что он принес в жертву богам сто быков в знак благодарности. Мы уже видели, что эта теорема была известна в Вавилоне времен Хаммурапи, но весьма возможно, что первое общее доказательство было получено в школе пифагорейцев.

Наиболее важным среди приписываемых пифагорейцам открытий было открытие иррационального в виде несоизмеримых отрезков прямой линии. Возможно, что оно было сделано в связи с исследованием геометрического среднего , величиной, которая интересовала пифагорейцев и служила символом аристократии. Чему равно геометрическое среднее единицы и двойки, двух священных символов? Это вело к изучению отношения сторон и диагонали квадрата, и было обнаружено, что такое отношение не выражается «числом», то есть тем, что мы теперь называем рациональным числом (целым числом или дробью), а только такие числа допускались пифагорейской арифметикой.

Допустим, что это отношение равно , где целые числа и мы всегда можем считать взаимно простыми. Тогда , следовательно, , а с ним и – четное число, и пусть . Тогда должно быть нечетным, но, так как , оно должно быть также четным. Такое противоречие разрешалось не расширением понятия числа, как на Востоке или в Европе эпохи Возрождения, а тем, что теория чисел для таких случаев отвергалась, синтез же искали в геометрии.

Это открытие, нарушившее непринужденную гармонию арифметики и геометрии, вероятно, было сделано в последние десятилетия пятого столетия до н.э. Сверх того, обнаружилась другая трудность – обнаружилась в соображениях о реальности изменений, и этим философы занимаются до наших дней. Открытие этой новой трудности приписывают Зенону Элейскому (около 450 т. до н.э.), ученику Парменида, философа-консерватора, который учил, что разум постигает только абсолютное бытие и что изменение есть только кажущееся. Это приобрело математическое значение тогда, когда в связи с такими задачами, как определение объема пирамиды, стали заниматься бесконечными процессами. Здесь парадоксы Зенона оказались в противоречии с некоторыми давними и интуитивными представлениями относительно бесконечно малого и бесконечно большого. Всегда считали, что сумму бесконечно многих величин можно сделать сколь угодно большой, даже если каждая величина крайне мала ( ), а также что сумма конечного или бесконечного числа величин размера нуль равна нулю ( ). Критика Зенона была направлена против таких представлений, и его четыре парадокса вызвали такое волнение, что и сейчас можно наблюдать некоторую рябь. Эти парадоксы дошли до нас благодаря Аристотелю и известны под названиями Ахиллес, Стрела, Дихотомия (деление на два) и Стадион. Они сформулированы так, чтобы подчеркнуть противоречия в понятиях движения и времени, но это вовсе не попытка разрешить такие противоречия.

Парадоксы Ахиллес и Дихотомия, которые мы излжим своими словами, разъяснят нам суть этих рассуждений.

Ахиллес. Ахиллес и черепаха движутся в одном направлении по прямой. Ахиллес куда быстрее черепахи, но, чтобы ее нагнать, ему надо сначала пройти точку , из которой черепаха начала движение. Когда Ахиллес попадет в , черепаха продвинется в точку . Ахиллес не может догнать черепаху, пока не попадет в , но черепаха при этом продвинется в новую точку . Если Ахиллес находится в , черепаха оказывается в новой точке и т. д. Следовательно, Ахиллес никогда не может догнать черепаху.

Дихотомия. Допустим, что я хочу пройти от до по прямой. Чтобы достичь , мне надо сначала пройти половину ( ) расстояния ; чтобы достичь , я должен сначала достичь на полпути от до , и так до бесконечности, так что движение никогда не сможет начаться.

Аргументы Зенона показали, что конечный отрезок можно разбить на бесконечное число малых отрезков, каждый из которых – конечной длины. Они показали также, что мы встречаемся с затруднениями при объяснении того, каков смысл заявления, что прямая «состоит» из точек. Весьма вероятно, что сам Зенон не имел представления о том, к каким математическим выводам приводят его рассуждения. Проблемы, приведшие к парадоксам Зенона, неизменно возникают в ходе философских и теологических дискуссий. Мы в них видим проблемы, связанные с отношением потенциальной и актуальной бесконечности. Впрочем, Поль Таннери считал, что рассуждения Зенона прежде всего были направлены против пифагорейского представления пространства как суммы точек («точка есть единица положения»). Как бы дело ни обстояло, несомненно, что рассуждения Зенона оказывали влияние на математическую мысль многих поколений. Его парадоксы можно сопоставить с теми, которыми пользовался в 1734 г. епископ Беркли, показывая, к каким логическим нелепостям может привести плохая формулировка положений математического анализа, но не предлагая со своей стороны лучшего обоснования.

После открытия иррационального соображения Зенона стали даже еще больше беспокоить математиков. Возможна ли математика как точная наука? Таннери полагал, что мы можем говорить о «настоящем логическом скандале» – о кризисе греческой математики. Если дело обстояло именно так, то этот кризис начинается под конец Пелопонесской войны, закончившейся падением Афин (404 г. до н.э.). Тогда мы можем обнаружить связь между кризисом в математике и кризисом общественной системы, так как падение Афин означало смертный приговор владычеству рабовладельческой демократии и начало нового периода главенства аристократии – кризис, который был разрешен уже в духе новой эпохи.

5. Для этого нового периода греческой истории характерно то, что растет богатство определенной части правящих классов и равным образом растут нищета и необеспеченность бедняков. Правящие классы все больше средств для существования получали за счет рабского труда. Это давало им досуг для занятий искусством и наукой, но заодно все более усиливало их нерасположение к физическому труду. Эти досужие господа с презрением относились к труду рабов и ремесленников, и успокоения от забот они искали в занятиях философией и этикой индивидуума. На таких позициях стояли Платон и Аристотель. В «Республике» Платона (написанной, вероятно, около 360 г. до н.э.) мы находим самое четкое выражение идеалов рабовладельческой аристократии. «Стражи» в республике Платона должны изучать «квадривиум», состоящий из арифметики, геометрии, астрономии и музыки, для того чтобы понимать законы вселенной.

Такая интеллектуальная атмосфера (по крайней мере, в своем раннем периоде) была благоприятна для обсуждения основ математики и для умозрительной космогонии.

По меньшей мере три больших математика этого периода были связаны с Академией Платона,. а именно Архит, Теэтет (ум. в 369 г.) и Евдокс (ок. 408–355). Теэтету приписывают ту теорию иррациональных, которая изложена в десятой книге «Начал» Евклида. Имя Евдокса связано с теорией отношений, которую Евклид дает в своей пятой книге, а также с так называемым методом исчерпывания, который позволил строго проводить вычисление площадей и объемов. Это означает, что именно Евдокс преодолел «кризис» в греческой математике и что его строгие формулировки помогли определить направление развития греческой аксиоматики и, в значительной мере, всей греческой математики.

Евдоксова теория отношений покончила с арифметической теорией пифагорейцев, применимой только к соизмеримым величинам. Это была чисто геометрическая теория, изложенная в строгой аксиоматической форме, и она сделала излишними какие-либо оговорки относительно несоизмеримости или соизмеримости рассматриваемых величин.

Типичным является «Определение V» книги V «Начал» Евклида: Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвертой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвертой, каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке. Современная теория ирационального числа, построенная Дедекиндом и Вейерштрассом, почти буквально следует ходу мыслей Евдокса, но она открывает значительно более широкие перспективы благодаря использованию современных математических методов.

«Метод исчерпывания» (термин «исчерпывание» впервые появляется у Григория Сен Венсана, 1647 г.) был ответом школы Платона Зенону. Метод обходил все ловушки бесконечно малого, попросту устраняя их, так как сводил проблемы, в которых могли появиться бесконечно малые, к проблемам, решаемым средствами формальной логики. Например, если требовалось доказать, что объем тетраэдра равен одной трети объема призмы с тем же основанием и той же высотой, то доказательство состояло в том, чтобы показать абсурдность как допущения, что , так и допущения, что . Для этого была введена аксиома, известная теперь как аксиома Архимеда (Формулировка Архимеда, который явно приписывает ее Евдоксу, такова: «Если два пространства не равны, то можно столько раз сложить с собою разность, на которую большее превосходит меньшее, чтобы она превзошла любое конечное пространство»). Она лежит в основе теории отношений Евдокса, а именно: «о тех величинах говорят, что они находятся в некотором отношении одна к другой, которые могут, будучи умножены, превзойти одна другую» (Евклид V, Определение 4). Этот метод, который у греков и в эпоху Возрождения стал стандартным методом точного доказательства при вычислении площадей и объемов, был вполне строг, и его легко превратить в доказательство, отвечающее требованиям современной математики.

Большим недостатком этого метода было то, что надо было заранее знать результат, чтобы его доказать, так что математик должен был сперва прийти к результату менее строгим путем, с помощью проб и попыток.

Есть ясные указания на то, чго такого рода иной метод действительно использовался. Мы располагаем письмом Архимеда Эратосфену (около 250 г. до н.э.), которое было обнаружено лишь в 1906 г. и в котором Архимед описывает нестрогий, но плодотворный способ получения результатов. Это письмо известно под названием «Метод». С. Лурье выдвинул предположение, что в нем выражены взгляды математической школы, которая соперничала со школой Евдокса, возникла, как и та, в период кризиса и связана была с Демокритом, основателем атомистики. Согласно теории Лурье, школа Демокрита ввела понятие «геометрического атома». Предполагалось, что отрезок прямой, площадь, объем состоят из большого, но конечного числа неделимых «атомов». Вычисление объема тела было суммированием объемов всех «атомов», из которых состояло тело. Эта теория может показаться нелепой, если не вспомнить, что некоторые математики эпохи до Ньютона, особенно Виет и Кеплер, в сущности, пользовались такими же понятиями и считали окружность составленной из очень большого числа крошечных отрезков. Нет никаких данных за то, что в древности на такой основе был развит строгий метод, но наши современные понятия предела дали возможность превратить эту «атомную» теорию в теорию столь же строгую, как и метод исчерпывания. Даже в наши дни мы обычно пользуемся таким понятием «атома» при постановке математических задач в теории упругости, в физике или в химии, оставляя строгую теорию с переходами к пределу профессиональным математикам.

Преимущество «атомного» метода перед методом исчерпывания в том, что первый облегчает нахождение новых результатов. Итак, у античности был выбор между строгим, но относительно бесплодным методом и методом с шатким обоснованием, но более плодотворным. Поучительно, что почти все классические авторы применяют первый метод. Это опять-таки может быть связано с тем, что математика стала коньком праздного класса, опиравшегося на рабство, равнодушного к изобретениям, с созерцательными интересами. Возможно и то, что в этом сказалась победа в области философии математики идеализма Платона над материализмом Демокрита.

6. В 334 г. до н.э. Александр Македонский начал завоевание Персии. В 323 г., когда он умер в Вавилоне, весь Ближний Восток был в руках греков. Полководцы Александра разделили между собой его завоевания, и со временем возникли три империи: Египет, под властью Птолемеев; Месопотамия и Сирия, под властью Селевкидов; Македония, под властью Антигона и его преемников. Даже в долине Инда были греческие князья. Началась эпоха эллинизма.

Прямым последствием походов Александра было то, что ускорилось проникновение греческой цивилизации в обширные районы восточного мира. Эллинизировались Египет, Месопотамия, часть Индии. Греки хлынули на Ближний Восток – торговцы, купцы, врачи, путешественники, наемники, искатели приключений. В городах – многие из них были недавно основаны, что было легко распознать по их эллинистическим названиям, – военное дело и администрация были в руках греков, население было смешанным, греко-восточным. Но эллинизм был существенно городской цивилизацией. Село сохранило свое коренное население и свой традиционный жизненный уклад. В городах же старая культура Востока соприкасалась с импортированной цивилизацией греков и частично смешалась с нею, хотя всегда оставалось в силе глубокое различие этих двух миров. Монархи эпохи эллинизма следовали восточным обычаям, решали восточные проблемы управления, но поощряли греческое искусство, греческую литературу и греческую науку.

Так и греческая математика была пересажена в новую среду. Она сохранила многие свои прежние особенности, но испытала влияние тех административных и астрономических запросов, которые выдвигал Восток. Такое тесное соприкосновение греческой науки с Востоком оказалось исключительно плодотворным, особенно в первые столетия. Фактически вся действительно творческая работа, которую мы называем «греческой математикой», была проделана за сравнительно короткий срок от 350 до 200 г. до н.э., от Евдокса до Аполлония, и даже достижения Евдокса известны нам только в том истолковании, в каком мы их находим у Евклида и Архимеда. Замечательно также, что наибольшего расцвета эта эллинистическая математика достигла в Египте Птолемеев, а не в Месопотамии, хотя в Вавилоне коренная математика была на более высоком уровне.

Возможно, что это было обусловлено центральным положением Египта той эпохи в средиземноморском мире. Его новая столица, Александрия, построенная на берегу моря, стала умственным и хозяйственным центром эллинистического мира. Вавилон же прозябал, как отдаленный центр караванных путей, да и вовсе сходил со сцены – его сменил Ктесифон-Селевкия, новая столица империи Селевкидов. Насколько нам известно, ни один из великих греческих математиков не был когда-либо связан с Вавилоном. В Антиохии и Пергаме, тоже городах Селевкидской империи, но более близких к Средиземному морю, были важные школы греческой науки. Однако коренная вавилонская астрономия и математика как раз при Селевкидах достигли своей высшей точки, и мы только теперь начинаем лучше понимать, насколько существенно было их воздействие на греческую астрономию. Кроме Александрии, были и другие центры математической науки, прежде всего Афины и Сиракузы. Афины стали образовательным центром, а Сиракузы дали Архимеда, величайшего греческого математика.

7. В эту эпоху появился профессиональный ученый – человек, посвящающий свою жизнь развитию науки и получающий за это вознаграждение. Некоторые из наиболее выдающихся представителей такой группы людей жили в Александрии, где Птолемеи построили большой научный центр, так называемый Музей с его знаменитой библиотекой. Там сберегали и умножали научное и литературное наследие греков и добились при этом значительных успехов. Одним из первых связанных с Александрией ученых был Евклид, который является одним из наиболее влиятельных математиков всех времен.

О жизни Евклида мы не имеем никаких достоверных данных. Вероятно, он жил во времена первого Птолемея (306–283), которому, согласно преданию, он заявил, что к геометрии нет «царской дороги». Его наиболее знаменитое и наиболее выдающееся произведение – тринадцать книг его «Начал» (Stoicheia), но ему приписывают несколько других меньших трудов. Среди последних так называемые «Данные» (Data), содержащие то, что мы назвали бы приложениями алгебры к геометрии, но все это изложено строго геометрическим языком. Мы не знаем, какая часть этих трудов принадлежит самому Евклиду и какую часть составляют компиляции, но во многих местах проявляется поразительная проницательность. Это первые математические труды, которые дошли до нас от древних греков полностью. В истории Западного мира «Начала», после Библии, вероятно, наибольшее число раз изданная и более всего изучавшаяся книга. После изобретения книгопечатания появилось более тысячи изданий, а до того эта книга, преимущественно в рукописном виде, была основной при изучении геометрии. Большая часть нашей школьной геометрии заимствована часто буквально из первых шести книг «Начал», и традиция Евклида до сих пор тяготеет над нашим элементарным обучением. Для профессионального математика эти книги все еще обладают неотразимым очарованием, а их логическое построение повлияло на научное мышление, пожалуй, больше, чем какое бы то ни было другое произведение.

Изложение Евклида построено в виде строго логических выводов теорем из системы определений, постулатов и аксиом. В первых четырех книгах рассматривается геометрия на плоскости. Исходя из наиболее простых свойств линий и углов, мы приходим здесь к равенству треугольников, равенству площадей, теореме Пифагора (I, 47), построению квадрата, равновеликого заданному прямоугольнику, к золотому сечению, кругу и к правильным многоугольникам. В книге V изложена евдоксова теория несоизмеримых в ее чисто геометрической форме, в книге VI эта теория применена к подобию треугольников. Такое введение подобия – на столь позднем этапе – составляет одно из наиболее существенных различий между изложением планиметрии у Евклида и современным. Приписать его следует тому значению, которое Евклид придавал новой евдоксовой теории несоизмеримых. Эти геометрические рассмотрения завершаются в десятой книге, которую многие считают наиболее трудной у Евклида. В ней дана геометрическая классификация квадратичных иррациональностей и корней квадратных из них, то есть тех чисел, которые мы представляем в виде . В последних трех книгах излагается геометрия в пространстве. От телесных углов, объемов параллелепипедов, призм и пирамид мы доходим здесь до шара и до того, что по замыслу должно, видимо, венчать весь труд: исследования пяти правильных («Платоновых») тел и доказательства, что их существует только пять.

Книги VII – IX посвящены теории чисел, но не технике вычислений, а таким «пифагорейским» вопросам, как делимость целых чисел, суммирование геометрических прогрессий, и некоторым свойствам простых чисел. Тут мы встречаем и «алгоритм Евклида» для определения наибольшего общего делителя заданной системы чисел, и «теорему Евклида», что простых чисел бесконечно много (IX, 20). Особый интерес представляет теорема VI, 27: в ней идет речь о первой из дошедших до нас задач на максимум и доказывается, что из прямоугольников заданного периметра наибольшую площадь имеет квадрат. Пятый постулат книги I (неясно, в каком отношении находятся у Евклида «аксиомы» и «постулаты») эквивалентен так называемой «аксиоме параллельных», согласно которой через точку вне заданной прямой можно провести одну и только одну прямую, ей параллельную. Попытки сделать из этой аксиомы теорему заставили в девятнадцатом столетии полностью оценить мудрость Евклида: это утверждение было признано аксиомой и в связи с этим были открыты другие, так называемые неевклидовы геометрии.

Алгебраические выводы у Евклида приводятся исключительно в геометрическом виде. Выражение вида вводится как сторона квадрата с площадью , произведение – это площадь прямоугольника со сторонами и . Такой способ представления прежде всего был вызван теорией отношений Евдокса, в которой сознательно отвергались численные выражения для отрезков прямой и, таким образом, несоизмеримые рассматривались только геометрически: «числами» считались только целые числа или рациональные дроби.

Какую цель ставил себе Евклид, когда писал свои «Начала»? Мы можем с известной уверенностью полагать, что он хотел совместно изложить в одном труде три великих открытия недавнего прошлого: теорию отношений Евдокса, теорию иррациональных Теэтета и теорию пяти правильных тел, занимавших выдающееся место в космологии Платона. То были три типично «греческих» достижения.

8. Величайшим математиком эпохи эллинизма и всего древнего мира был Архимед (287–212), живший в Сиракузах, где он был советником царя Гиерона. Он – один из немногих ученых античности, которых мы знаем не только по имени: сохранились некоторые сведения о его жизни и личности. Мы знаем, что он был убит, когда римляне взяли Сиракузы, при осаде которых техническое искусство Архимеда было использовано защитниками города. Подобная склонность к практическим применениям представляется нам весьма необычной, если учесть, с каким презрением к этому относились современники Архимеда из школы Платона. Однако объяснение нам дает много раз цитированное сообщение Плутарха (в жизнеописании Марцелла), а именно: «Хотя эти изобретения заслужили ему репутацию сверхчеловеческой проницательности, он не снизошел до того, чтобы оставить какое-либо писанное сочинение по таким вопросам, а, считая низким и недостойным делом механику и искусство любого рода, если оно имеет целью пользу и выгоду, все свои честолюбивые притязания он основывал на тех умозрениях, красота и тонкость которых не запятнаны какой-либо примесью обычных житейских нужд».

Наиболее важный вклад Архимеда в математику относится к той области, которую теперь мы называем интегральным исчислением: теоремы о площадях плоских фигур и об объемах тел. В «Измерении круга» он нашел приближенное выражение для окружности, пользуясь вписанными и описанными правильными многоугольниками. Дойдя в этом приближении до многоугольников с 96 сторонами, он нашел (в наших обозначениях), что

.

Обычно об этом сообщают, говоря, что примерно равно . В книге Архимеда «О сфере и цилиндре» мы находим выражение для поверхности сферы (в таком виде: поверхность сферы в четыре раза больше площади большого круга) и для объема сферы (в таком виде: объем сферы равен объема описанного цилиндра).

В своей книге «Квадратура параболы» Архимед дал выражение для площади параболического сегмента ( площади вписанного треугольника с основанием таким же, как у сегмента, и с вершиной в точке, в которой касательная параллельна основанию). В книге о «Спиралях» мы находим «спираль Архимеда» и вычисление площадей, а в книге «О коноидах и сфероидах» – объемы некоторых тел, образованных вращением кривых второго порядка.

Имя Архимеда связано также с его теоремой о потере веса телами, погруженными в жидкость. Эта теорема находится в трактате по гидростатике «О плавающих телах».

Во всех этих трудах Архимеда поразительная оригинальность мысли сочетается с мастерской техникой вычислений и со строгостью доказательств. Характерны для этой строгости уже упомянутая «аксиома Архимеда» и постоянное использование метода исчерпывания при доказательстве его интеграционных результатов. Мы видели, что фактически он находил эти результаты более эвристическим путем («взвешивая» бесконечно малые), но затем он публиковал их, соблюдая самые жесткие требования строгости.

Обилие вычислений у Архимеда отличает его от большинства творческих математиков Греции. Это придает его трудам, при всех их типично греческих особенностях, восточный оттенок. Такой отпечаток заметен в его «Задаче о быках» – очень сложной задаче неопределенного анализа, которую можно истолковать как задачу, приводящую к уравнению

типа «уравнения Пелля», которое решается в очень больших (целых) числах. Это лишь одно из многих указаний на то, что традиции Платона никогда безраздельно не господствовали в математике эллинизма, и на то же самое указывает эллинистическая астрономия.

9. С третьим великим математиком эллинизма, Аполлонием из Перги (ок. 260–ок. 170), мы снова целиком в русле геометрической традиции греков. Аполлоний, который, по-видимому, вел обучение в Александрии и в Пергаме, написал трактат из восьми книг о конических сечениях («О кониках»). Семь книг сохранилось, три из них – только в арабском переводе. Это – трактат об эллипсе, параболе и гиперболе, определяемых как сечения кругового конуса, где изложение доведено до исследования эволют конического сечения. Мы называем эти кривые, следуя Аполлонию; эти названия выражают одно из свойств этих кривых, связанное с площадями и выражаемое, в наших обозначениях, уравнениями

(запись однородная, у Аполлония и – отрезки; знак «+» дает гиперболу, знак «–» дает эллипс). Парабола здесь значит «приложение», эллипс – «приложение с недостатком», гипербола – «приложение с избытком». Аполлоний не располагал нашим координатным методом, потому что он не располагал алгебраическими обозначениями (вероятно, он сознательно, под влиянием школы Евдокса, отвергал их). Однако многие его результаты можно сразу записать на языке координат, включая свойство эволют, совпадающее с тем, что выражается их уравнением в декартовых координатах. То же самое можно сказать о других книгах Аполлония, которые сохранились частично. Они содержат «алгебраическую» геометрию на геометрическом языке и поэтому в однородной записи. Здесь мы находим задачу Аполлония: построить окружность, касательную к трем заданным окружностям; окружности можно заменить прямыми или точками. У Аполлония мы впервые встречаем в явном виде требование, чтобы геометрические построения выполнялись только с помощью циркуля и линейки. Следовательно, это не было столь общим «греческим» требованием, как иной раз утверждают.

10. Математику в течение всей ее истории вплоть до современности нельзя отрывать от астрономии. Запросы ирригации и сельского хозяйства в целом, а в известной мере и мореплавания обеспечили астрономии первое место в науке Востока и эллинистической науке. Ход развития астрономии в немалой мере определял ход развития математики. Астрономия во многом определяла содержание вычислительной математики, а порой и математических понятий, равным образом прогресс астрономии зависел от того, насколько сильна была доступная математическая литература. Строение солнечной системы таково, что сравнительно простыми математическими методами можно получить далеко идущие результаты, но в то же время оно достаточно сложно для того, чтобы стимулировать совершенствование этих методов и самих астрономических теорий. На Востоке в эпоху, непосредственно предшествующую эллинистической, добились значительного продвижения в вычислительной астрономии, особенно в Месопотамии в позднеассирийскую и персидскую эпоху. Здесь систематически проводившиеся в течение длительного времени наблюдения дали возможность отлично разобраться во многих эфемеридах. Движение Луны для математика было одной из самых трудных и увлекательных астрономических проблем как в древности, так и в восемнадцатом веке, и вавилонские («халдейские») астрономы много сил положили на его исследование. Установление связей между греческой и вавилонской наукой в эпоху Селевкидов многое дало и в вычислительной, и в теоретической астрономии, и там, где наука Вавилона продолжала следовать древней календарной традиции, греческая наука смогла добиться некоторых из своих наиболее замечательных достижений.

Самым древним из известных нам греческих достижений в теоретической астрономии является планетная теория Евдокса, уже знакомого нам в качестве вдохновителя Евклида. Это была попытка объяснить движение планет (вокруг Земли) с помощью четырех вращающихся концентрических сфер, каждая из которых имела особую ось вращения с концами, закрепленными в охватывающей сфере. Это было нечто новое и типично греческое, больше объяснение, чем регистрация небесных явлений. При всей своей внешней примитивности теория Евдокса заключала в себе основную идею всех планетных теорий вплоть до семнадцатого столетия – объяснение неправильностей видимого движения Луны и планет наложением круговых движений. Эта идея лежит в основе и вычислительной части современной динамической теории, поскольку мы вводим ряды Фурье.

За Евдоксом последовал Аристарх Самосский (ок. 280 г. до н.э.), «Коперник античности», которому Архимед приписывает гипотезу, что центром в движении планет является Солнце, а не Земля. У этой гипотезы в древности было мало приверженцев, хотя широко было распространено убеждение в том, что Земля вращается вокруг своей оси. Что гелиоцентрическая гипотеза имела мало успеха, объясняется преимущественно авторитетом Гиппарха, которого часто называют величайшим астрономом античности.

Гиппарх из Никеи вел наблюдения между 161 и 126 г. до н.э. Непосредственно от него до нас дошло немного – главным источником сведений о его достижениях является Птолемей, живший тремя столетиями позже. Многое в большом труде Птолемея, в «Альмагесте», может быть приписано Гиппарху, в частности применение эксцентрических кругов и эпициклов для объяснения движения Солнца, Луны и планет, а также открытые предварения равноденствий. Гиппарху приписывают также определение широты и долготы астрономическими средствами, но в древности ни разу не смогли так организовать научные работы, чтобы можно было в больших масштабах выполнить съемку местности. (Ученые в древности попадались редко как в пространстве, так и во времени.) Труды Гиппарха тесно связаны с достижениями вавилонской астрономии, которая в его время достигла больших высот. Можно считать эти труды наиболее важным научным плодом греко-восточных связей в эпоху эллинизма.

11. Третий и последний период античного общества – период господства Рима. Рим завоевал Сиракузы в 212, Карфаген – в 146, Грецию – в 146, Месопотамию – в 64, Египет – в 30 г. до н.э. Все, чем римляне овладели па Востоке, включая Грецию, было низведено до положения колонии, управляемой римскими администраторами. Римское правление не затрагивало экономической структуры восточных стран, пока в срок поступали тяжелые налоги и другие поборы. Римская империя естественным образом расщепилась на западную часть с экстенсивным сельским хозяйством, где применялись покупные рабы, и на восточную часть с интенсивным сельским хозяйством, где рабов использовали только для домашнего хозяйства и на общественных работах. Несмотря на рост некоторых городов и на торговлю, охватывавшую все известные страны Запада, основой экономического строя Римской империи оставалось земледелие. Расширение рабовладельческого хозяйства в таком обществе было роковым для всякой оригинальной науки. Рабовладельцы как класс редко бывают заинтересованы в технических открытиях, отчасти потому, что рабы все делают дешево, отчасти потому, что они боятся давать рабам такие орудия, которые могут способствовать умственному развитию. Многие из правящего класса слегка занимались искусствами и науками, но такие стремления были залогом скорее посредственности, чем творческого мышления. Когда вместе с упадком торговли рабами стала хиреть экономика Рима, немного было людей, которые могли развивать даже посредственную науку предыдущих столетий.

Пока Римская империя сохраняла известную устойчивость, восточная наука, своеобразная смесь эллинистических и восточных составных частей, продолжала процветать. Постепенно снижалась оригинальность, слабела движущая сила, но установленный римлянами на столетия мир (pax Romana) позволял без помех заниматься традиционными теориями. В течение нескольких столетий с «римским миром» сосуществовал «китайский мир» – pax Sinensis. Евразийский континент зa всю свою историю не имел такого долгого мирного периода, как при Антонинах в Риме и при династии Хань в Китае. Это облегчало проникновение знаний по континенту, из Рима и Афин в Месопотамию, Китай и Индию. Эллинистическая наука, как и прежде, проникала в Китай и Индию, испытывая в свою очередь влияние науки этих стран. Отблеск вавилонской астрономии и греческой математики падал на Италию, Испанию и Галлию – тому примером распространение в Римской империи деления угла и часа на шестьдесят частей. Существует теория Ф. Вёпке (F. Woepcke), по которой распространение в Европе так называемых индийско-арабских цифр связано с неопифагорейскими школами поздней Римской империи. Возможно, что это верно, но если эти цифры настолько стары, то более вероятно, что на их распространение повлияла торговля, а не философия.

Александрия оставалась центром античной математики. Велись оригинальные исследования, хотя компилирование и комментирование все более становилось основным видом научной деятельности. Многие результаты античных математиков и астрономов дошли до нас в трудах этих компиляторов, и порой очень трудно выделить то, что они передают и что они открыли сами. Пытаясь проследить постепенный упадок греческой математики, мы должны учитывать и ее техническую сторону: неуклюжий геометрический способ выражения при систематическом отказе от алгебраических обозначений, что делала почти невозможным какое-либо продвижение «за» конические сечения. Алгебру и вычисления оставляли презренным людям Востока, на чье учение был нанесен тонкий слой греческой цивилизации. Однако неверно утверждение, что александрийская математика была чисто греческой в традиционном понимании Евклида–Платона: вычислительной арифметикой и алгеброй египетско-вавилонского типа занимались бок о бок с абстрактными геометрическими рассуждениями. Достаточно вспомнить о Птолемее, Героне и Диофанте, чтобы в этом убедиться. Объединяло различные расы и школы только пользование греческим языком.

12. Одним из самых ранних александрийских математиков римского периода был Никомах из Герасы (ок. 100 г.), чье «Арифметическое введение» – наиболее полное из сохранившихся изложений пифагорейской арифметики. Там рассматриваются большей частью те же вопросы, что и в арифметических книгах Евклида, но тогда как у Евклида числа изображаются отрезками, Никомах пользуется арифметическими обозначениями и, если имеет дело с неопределенными числами, обычной речью. Полигональные и пирамидальные числа Никомаха оказали влияние на средневековую арифметику, главным образом через Боэция.

Одно из крупнейших произведений этого второго александрийского периода — «Великое собрание» Птолемея, более известное под арабизированным названием «Альмагест» (ок. 150 г.). «Альмагест» – астрономический труд высшего мастерства и весьма оригинальный, хотя многие из его идей идут от Гиппарха или от Кидинну и других вавилонских астрономов. В нем есть и тригонометрия с таблицей хорд для углов от 0° до 180°, соответствующая таблице синусов для углов от 0° до 90° через полградуса. Для синуса угла в 1° Птолемей нашел значение

(точное значение 0,017453...), для его значение . В «Альмагесте» мы находим формулу для синуса и косинуса суммы и разности двух углов и зачатки сферической тригонометрии. Теоремы формулируются геометрически – наши современные тригонометрические обозначения идут лишь от Эйлера (восемнадцатый век). В «Альмагесте» мы находим и «теорему Птолемея» о четырехугольнике, вписанном в окружность. В «Планисферии» Птолемея рассматривается стереографическая проекция, а в его «Геометрии» положение на Земле определяется с помощью долготы и широты. Последние, таким образом, являются давним примером координат на сфере.

На стереографической проекции основана конструкция астролябии – прибора, который применяли для определения положения на Земле. Астролябия была известна в древности, и ею широко пользовались до введения октанта, позже – секстанта, в восемнадцатом веке.

Несколько старше Птолемея Менелай (ок. 100 г.). В его «Сферике» содержится геометрия сферы и рассматриваются сферические треугольники – предмет, которого нет у Евклида. Здесь мы находим «теорему Менелая» для треугольника в обобщенном для сферы виде. В астрономии Птолемея немало вычислений в шестидесятичных дробях, а трактат Менелая геометричен строго в духе евклидовой традиции.

К эпохе Менелая, возможно, относится и Герон, – во всяком случае мы знаем, что он точно описал лунное затмение 62 г.. Герон был энциклопедистом, он писал на геометрические, вычислительные и механические темы, его произведения – любопытная смесь греческого и восточного. В своей «Метрике» он выводит «формулу Герона» для площади треугольника ( ) чисто геометрическим образом; сам результат приписывается Архимеду. В той же «Метрике» мы находим типично египетские «основные» дроби, например в приближении для ( ) Формулу Герона для объема усеченной пирамиды с квадратным' основанием без труда можно свести к формуле, имеющейся в Московском папирусе. Напротив, определение объема пяти правильных многогранников у Герона – в духе Евклида.

13. Еще сильнее восточный колорит в «Арифметике» Диофанта (ок. 250 г.). Уцелели только шесть книг оригинала, общее их число – предмет догадок. Искусная трактовка в них неопределенных уравнений показывает, что древняя алгебра Вавилона или, быть может, Индии не только существовала под тонким слоем греческой цивилизации, но ее совершенствовали немногочисленные деятели эпохи. Как и когда это происходило, мы не знаем, как не знаем, кем был Диофант, – возможно, что он был эллинизированный вавилонянин. Его книга – один из наиболее увлекательных трактатов, сохранившихся от греко-римской древности.

В собрание Диофанта входят весьма разнообразные задачи, а их решения часто в высшей степени остроумны. «Диофантов анализ» состоит в нахождении решений неопределенных уравнений вида или систем таких уравнений. Типично для Диофанта то, что его интересуют только положительные рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получались искомые положительные рациональные решения.

Среди этих уравнений мы обнаруживаем такие, как и , теперь известные как «уравнения Пелля». У Диофанта есть несколько теорем теории чисел, как, например, теорема (III, 19), что произведение двух целых чисел можно двумя способами представить как сумму двух квадратов, если каждый сомножитель – сумма двух квадратов. Есть и теоремы о разбивке числа на сумму трех и четырех квадратов. У Диофанта мы впервые встречаем систематическое использование алгебраических символов. У него есть особые знаки для неизвестного, для минуса, для обратной величины. Эти знаки все еще скорее сокращения, чем алгебраические символы в нашем смысле (они образуют так называемую реторическую алгебру); для каждой степени неизвестного был особый символ. Нет сомнения, что здесь перед нами не только арифметические вопросы вполне алгебраического характера, как в Вавилоне, но и хорошо развитые алгебраические обозначения, которые весьма способствовали решению задач значительно более сложных, чем любые ранее поставленные.

14. Последний из больших александрийских математических трактатов написан Паппом (конец третьего столетия). Его «Собрание» («Synagoge») – нечто вроде учебника для изучающих греческую геометрию, с историческими справками, с улучшением и видоизменением известных теорем и доказательств. Скорее всего, трактат надо было читать вместе с оригинальными трудами, а не самостоятельно.

Многие результаты древних авторов известны только в той форме, в какой они сохранились у Паппа, например задачи о квадратуре круга, удвоении куба и трисекции угла. Интересна глава об изопериметрических фигуpaх с положением, что круг имеет большую площадь, чем любой правильный многоугольник того же периметра. Здесь есть и замечание, что пчелиные соты обладают некоторыми максимально-минимальными свойствами. Полуправильные тела Архимеда тоже известны благодаря Паппу. Как и «Арифметика» Диофанта, «Собрание» Паппа – книга, которая будит мысль, и ее задачи вдохновляли многих исследователей более поздних времен.

Александрийская школа медленно умирала вместе с упадком античного общества. В целом она оставалась оплотом язычества против распространявшегося христианства, и некоторые из ее математиков отмечены и в истории античной философии. Прокл (410–485), чей «Комментарий к Первой книге Евклида» – один из наших главных источников по истории греческой математики, возглавлял школу неоплатоников в Афинах. В Александрии ту же школу представляла Гипатия, которая писала комментарии к классикам математики. Она была убита в 415 г. приверженцами св. Кирилла. Ее судьба сделала ее героиней романа Чарльза Кингсли (Charles Kingsley). Эти философские школы вместе со своими комментаторами в течение столетий то процветали, то хирели. Академия в Афинах была закрыта императором Юстинианом как языческая (529 г.), но к тому времени возникли школы в таких местах, как Константинополь и Джунди-Шапур (Jundishapur). В Константинополе сберегались многие старые своды рукописей и комментаторы продолжали на греческом языке закреплять память о греческой науке и философии. В 630 г. Александрию взяли арабы и верхний слой греческой цивилизации в Египте был заменен арабским слоем. Нет оснований утверждать, что знаменитую александрийскую библиотеку уничтожили арабы, потому что сомнительно, существовала ли еще она в то время. Фактически арабское завоевание не изменило существенным образом характера математических исследований в Египте. Мог иметь место регресс, но когда мы вновь услышим о египетской математике, окажется, что она следует древней греко-восточной традиции (например, Алхазен).

15. Мы закончим эту главу некоторыми замечаниями о греческой арифметике и логистике. Греческая математика отличала арифметику или науку о числах от логистики, то есть от практических вычислений. Термин «аритмос» обозначал только натуральное число, «количество, составленное из единиц» (Евклид, VII, определение 2; это значило также, что «один» не считалось числом). Нашего понятия действительного числа не знали. Поэтому отрезок прямой не всегда имел длину. Вместо наших операций с действительными числами пользовались геометрическими рассуждениями. Когда Евклиду нужно сформулировать, что площадь треугольника равна половине произведения основания на высоту, он говорит, что она равна половине площади параллелограмма с тем же основанием и лежащего между теми же параллелями (Евклид I, 41). Теорема Пифагора была зависимостью между площадями трех квадратов, а не между длинами трех сторон. В «Началах» Евклида имеется теория квадратных уравнений, но она излагается с помощью «площадей», а так как корни представляют собой отрезки, определяемые известными построениями, то можно установить, что допускались только положительные корни. Все же в «Началах» не обязательно, чтобы каждому отрезку соответствовало числовое значение. Такие представления об отрезках и числах надо считать продуманной системой, результатом победы платоновского идеализма среди той части правящего класса Греции, которая интересовалась математикой. Ведь согласно восточным представлениям той же эпохи относительно зависимости между алгеброй и геометрией никакие ограничения на понятие числа не налагались. Есть все основания полагать, что для вавилонян теорема Пифагора была числовой зависимостью между длинами сторон, и именно с такой математикой ознакомились ионийские ученые.

Обычная вычислительная математика, известная как «логистика», оставалась жизнеспособной во все периоды греческой истории. Евклид ее отвергал, но Архимед и Герон ею пользовались свободно, без угрызений совести. Ее основой была система счисления, которая со временем изменилась. Ранняя греческая система счисления была десятичной и аддитивной, как египетская и римская. В александрийскую эпоху, а может быть и раньше, появляется способ записи чисел, которым пятнадцать веков пользовались не только ученые, но и купцы и чиновники. Знаки греческого алфавита последовательно применялись для обозначения сначала наших символов 1, 2, ..., 9, затем десятков, от 10 кончая 90, и, наконец, сотен, от 100 кончая 900 ( и т.д.). Три архаичные буквы были добавлены к 24 буквам греческого алфавита, чтобы получить необходимые 27 знаков. С помощью такой системы любое число меньше 1000 можно было записать не более чем тремя знаками, например 14 как , так как ; числа, большие 1000, можно было выразить с помощью простого расширения такой системы. Ею пользуются в сохранившихся рукописях работ Архимеда, Герона и всех других классических авторов. Имеются археологические данные о том, что этой системе обучали в школах. Это была десятичная непозиционная система: как , так и могло значить только 14. Такое отсутствие позиционности и использование не менее чем 27 знаков иной раз рассматривались как доказательство несовершенства системы. Но то, как легко ею пользовались математики древности, и то, что греческие купцы применяли ее даже при очень сложных расчетах – в Восточной Римской империи вплоть до ее гибели в 1453 г., – указывает, по-видимому, на наличие некоторых преимуществ. При известном опыте вычислений при такой системе мы действительно убеждаемся, что четыре основных действия можно выполнять достаточно легко, если твердо знать символы. Действия с дробями при подходящих обозначениях тоже просты, но греки не были при этом последовательны, так как у них не было единой системы: они пользовались египетскими «основными» дробями, вавилонскими шестидесятичными дробями и записью дробей, напоминающей нашу. Десятичные дроби не были введены, это великое усовершенствование в Европе появляется в эпоху позднего Ренессанса, когда вычислительный аппарат был развит значительно больше, чем когда бы то ни было в древности. Но даже в этих условиях десятичные дроби не были приняты во многих школах до восемнадцатого и девятнадцатого столетия, Доказывали, что алфавитная система счисления губительно повлияла на развитие греческой алгебры, так как применение букв для определенных чисел мешало применять буквы для обозначения чисел вообще, как это делается в нашей алгебре. Надо отвергнуть такое формальное объяснение отсутствия алгебры у греков до Диофанта, даже если высоко оценивать значение подходящих обозначений. Если бы классические авторы интересовались алгеброй, они создали бы подходящую символику, что действительно начал делать Диофант.

Вопрос об алгебре у греков можно будет разъяснить только после дальнейшего изучения связей греческой математики и вавилонской алгебры в общей системе связей между Грецией и Востоком.