Чем больше степень переохлаждения ΔT , тем больше разность свободных энергий ΔF , тем интенсивнее будет идти кристаллизация.

Последовательность формирования кристаллов в процессе кристаллизации одинакова для всех металлических материалов независимо от их состава и включает в себя следующие стадии:

1 стадия кристаллизации — зарождение центров (зародышей) кристаллизации (рис.2.2, а). Вокруг образовавшихся центров начинают расти кристаллы. Одновременно в жидкой фазе образуются новые центры кристаллизации.

 

Рис.2.2. Последовательные стадии кристаллизации.

 

2 стадия кристаллизации — образование главной оси -- оси первого

порядка (рис.2.2, б). Главная ось кристаллизации определяет направление будущего кристалла. Увеличение общей массы затвердевшего металла происходит как за счет возникновения новых центров кристаллизации, так и за счет роста уже существующих.

3 стадия кристаллизации – образование осей кристаллизации 2 и 3 порядка, перпендикулярных к главной оси (рис. 2.2., а, б и рис. 2.3). Такая структура формирует основу будущего кристалла. Ее называют дендритной структурой (древовидный, древообразный).

4 завершающая стадия кристаллизации – кристаллизация межосного пространства (рис.2.2, г и рис. 2.4).

 

Рис. 2.3. Схема дендритной структуры

(1, 2, 3 – оси кристаллизации 1, 2, 3 порядка).

 

На первых стадиях кристаллизации образовавшиеся кристаллы (зерна) растут свободно и имеют почти правильную форму. Затем при соприкосновении растущих кристаллов их правильная форма нарушается. Дальнейший рост кристаллов продолжается только в тех направлениях, где есть свободный доступ оставшегося жидкого металла. В результате на завершающей стадии процесса кристаллизации строение кристаллов (зерен) получает неправильную форму (рис.2.2, г и рис.2.4).

Рис. 2.4. Схема кристаллизации металла.

 

Таким образом, в результате кристаллизации в металлических материалах образуется зернистая структура (рис.2.3, г и рис.2.4).

Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем мельче зерно металла.

В свою очередь на образование центров кристаллизации влияет скорость охлаждения и степень переохлаждения. Чем выше скорость охлаждения, тем мельче зерно.

Реальный процесс получения металла в больших объемах (называются слитки) показан на рис.2.5.

Рис. 2.5. Строение слитка.

 

Рассмотрим строение слитка в твердом состоянии. Слитки получают охлаждением в металлических формах (изложницах). Кристаллизация начинается у поверхности изложницы, где самый большой отвод тепла и самая высокая степень переохлаждения. Здесь образуются самые мелкие кристаллы. Это I зона кристаллизации -- мелкозернистая корка (рис.2.5, 1).

II зона кристаллизации — зона столбчатых кристаллов (рис.2.5, 2) связана с направленным отводом тепла — перпендикулярно к стенкам изложницы. При этом скорость охлаждения уменьшается и образуются более крупные зерна.

III зона кристаллизации -- зона равноосных кристаллов. Их главные оси не имеют одинаковой направленности и эти зерна являются самыми крупными по объему слитка, так как в центре слитка самая низкая скорость охлаждения.

Таким образом, металл после завершения кристаллизации (его называют литой металл), независимо от объема металла, имеет неоднородную структуру. Такую неоднородность металла называют зональной.

Зональная неоднородность — неоднородность по форме и величине зерна.

Она обусловлена разной скоростью охлаждения и разной степенью переохлаждения по объему слитка.

Второй вид неоднородности - неоднородность по химическому составу, которая тем больше, чем крупнее слиток. I зона является наиболее однородной по составу, а значит и самой качественной. Самая неоднородная область - середина слитка. Неоднородность по химическому составу называют ликвацией.

Зональная ликвация — неоднородность по химическому составу по зонам слитка.