Относительная фазовая проницаемость.

fн=kн/kа

fв=kв/kа

Фазовая проницаемость – проницаемость такой фиктивной среды, которая состоит из доли пор, насыщенной данной фазы, и при этом влияние другой фазы пор не ощущается.

Пористость фиктивной пористой среды записывается следующим образом:

kпф=kп × kн.н. kвф=kп × (1 – kн.н.)

Они зависят от степени нефтенасыщенности:

k н.н. =1 – k в ( S в )

Фазовая проницаемость зависит от степени водонасыщенности:

fв=¦(Sв)

Каждая фаза движется по своей системе пор и не влияет на другую.

Условия совместной фильтрации.

S – точка, где вода теряет свою сплошность (образуются капли). В ней минимальная насыщенность водой. Проницаемость от 0 до S равна 0.

Начиная с S водяная фаза преодолевает порог перколяции, образуя фазу.

S* - точка, где нефть/газ перестаёт двигаться. В ней максимальная водонасыщенность. Нефть в объёме пор находится в связанном состоянии.

Sос=(1-S*) – характеризует долю нефти/газа, которые неподвижны – остаточная нефтенасыщенность.

В обоих случаях f<1.

0 – точка равенства проницаемостей по нефти и по воде.

Факторы, влияющие на фазовую проницаемость:

1. геометрия структуры пор

2. градиент давления

3. характер смачивания пористой среды данной фазы

Чем сложнее конфигурация пор, тем сильнее выражена сила сопротивления.

Фазовые проницаемости трещинной среды выглядят следующим образом:

Обнаружено, что наибольшее влияние имеет изменение структуры пор по воде, затем по нефти и ещё меньше по газу.

Фазовые проницаемости зависят от степени смачиваемости.

Для гидрофобного пласта «0» сдвигается в сторону уменьшения водонасыщенности.

 

– гидрофобный пласт

 

– гидрофильный пласт

 

Для гидрофобных пластов фазовая проницаемость по воде выше, чем для гидрофильных, следовательно: не следует заводнять гидрофобные пласты (они лучше проводят воду). В них присутствует эффект смазки. Жидкость встречает меньше сопротивления, т.к. поверхность не оказывает влияния на движение.

Целесообразнее рассматривать нормированные фазовые проницаемости.

kф(S)/kфf(S) kф/kо=kоf(S)

1 f(S) f(S*)

fн,в

 

S S*

Чтобы рассматривать насыщенность только в области, где существуют обе фазы, берут приведённую насыщенность.

s =(S в –S)/(1–S–(1-S*))=(S в -S)/(S*-S)

Нормированные фазовые проницаемости имеют более универсальный характер.

fн,в

1

 

 

 

0 1 s

 

Рассмотрим условия совместного движения трёх фаз.

 

 

Чем больше удельная поверхность, тем сильнее твёрдая фаза влияет на движение жидкости и газа.

Сужается диапазон фазовой проницаемости.


8. Физика процессов теплоотдачи в нефтегазовых пластах; параметры, характеризующие свойства пласта; тепловые поля.

Тепловые процессы в нефтегазовых пластах.

Причины:

В естественном состоянии пласты находятся на большой глубине, а, судя по геотермическим ступеням, температура в этих условиях близка к 150°, поэтому можно утверждать, что породы изменяют свои свойства, ведь при проникновении в пласт мы нарушаем тепловое равновесие.

Попадая в пласт, вода начинает охлаждать пласт, что неминуемо приведёт к различным неблагоприятным явлениям, например парафинизации нефти.

Высоковязкие нефти.

Для их разжижения используют теплоноситель: горячую воду, перегретый пар, а также внутренние источники тепла. Так в качестве источника используют фронт горения: поджигают нефть и подают окислитель.

Механизмы теплопередачи.

· кондуктивный перенос тепла - осуществляется вследствие соударения молекул, электронов и агрегатов элементарных частиц друг с другом. (Теплота переходит от более нагретого тела к менее нагретому). Или в металах: постепенная передача колебаний кристаллической решётки от одной частицы к другой (упругие колебания частиц решётки – фононная теплопроводность).

· конвективный перенос - перенос связан с движением частиц флюидов и обусловлен перемещением микроскопических элементов веществ, его осуществляет свободное или вынужденное движение теплоносителя.

· Теплообмен, связанный с излучением.

Коэффициенты, характеризующие тепловые свойства пласта.

Тепловыми свойствами являются:

Коэффициент теплоёмкости с

Коэффициент теплопроводности l

Коэффициент температуроппроводности а

Теплоёмкость:

с – количество теплоты, необходимое для повышения температуры вещества на один градус при заданных условиях (V, Р=соnst).

с=dQ/dТ

Удельная массовая теплоёмкость [Дж/(кг×град)]:

Удельная объёмная теплоёмкость [Дж/(м3×К)]:

Сv=dQ/(V×dТ)=r×Сm,

Удельная молярная теплоёмкость [Дж/(моль×К)]:

Сn=dQ/(n×dТ)=М×Сm,

Теплоёмкость является аддитивным свойством пласта:

Теплопроводность.

l [Вт/(м×К)] характеризует свойство породы передавать кинетическую (или тепловую) энергию от одного элемента к другому.

Коэффициент теплопроводности – количество тепла, проходящее за единицу времени через кубический объём вещества с гранью единичного размера, при этом на других гранях поддерживается разница температур в один градус (DТ=1°).

Коэффициент теплопроводности зависит от:

· минерального состава скелета.

· степени наполненности скелета.

· теплопроводности флюидов.

Аддитивность для коэффициента теплопроводности не соблюдается.

Важным свойством является величина обратная теплопроводности, именуемая тепловым сопротивлением.

Вследствие теплового сопротивления, мы имеем сложное распределение тепловых полей. Это приводит к тепловой конвекции, благодаря которой могут образовываться особые типы залежей – не обычная покрышка, а термодинамическая.

Температуропроводность.

На практике часто используется такой коэффициент, как температуропроводность, который характеризует скорость изменения температуры при нестационарном процессе теплопередачи.

а=l/(с×r), когда l=соnst.

На самом деле «а» не является постоянной, т.к. l является функцией координат и температуры, а с – коэффициента пористости, массы и т.д.

Терлопередача.

DQ=kт×DТ×DS×Dt,

где kт – коэффициент теплопередачи.

Его физический смысл: количество тепла, ушедшего в соседние пласты, через единицу поверхности, в единицу времени при изменении температуры на один градус.

Обычно теплопередача связана с вытеснением в выше и ниже лежащие пласты.

Тепло, которое поглощается породой, расходуется не только на кинетические тепловые процессы, но и на совершение механической работы, она связана с тепловым расширением пласта.

Связь между ростом температуры и линейной деформацией может быть записана:

dL=a×L×dТ,

где L – первоначальная длина [м], a - коэффициент линейного теплового расширения [1/град].

dL/L=a×dТ

Аналогично для объёмного расширения:

dV/V=gт×dТ,

где gт – коэффициент объёмной тепловой деформации.

Поскольку коэффициенты объёмного расширения сильно различаются для разных зёрен, то в процессе воздействия произойдут неравномерные деформации, что приведёт к разрушению пласта.


9. Физическая сущность явления смачиваемости нефтегазовых пластов; виды смачиваемости; параметры, характеризующие смачиваемость пласта.

Параметр смачивания и краевой угол смачивания.

Из-за равенства векторов, т.к. капля неподвижна, получаются следующие соотношения:

s2,3=s1,3+s1,2×соsq

соsq=(s2,3 - s1,3)/s1,2

Такие соотношения называются законом (правилом) Юнга.

Величины s1,3 и s2,3 практически неизвестны, поэтому об их соотношениях судят косвенно по углу q.

q не зависит от размеров капли до определённых её размеров и определяется методом «висячей капли». Этот угол зависит также от природы контактирующих областей и полярности веществ.

Работа адгезии.

Wа=s2,3+s1,2 - s1,3

или, записанная через угол q:

Wа=s1,2×(1+соsq)

Это соотношение называется соотношением Дюпре-Юнга.

Þ s2,3 - s1,3=s1,2×соsq,

где s1,2×соsq называется натяжением смачиваемости, или смачиваемостью.

Теплота смачиваемости.

То количество тепла, которое выделятся при нанесении нами капли на поверхность.

6.3-24 кДж/кг – средняя теплота смачиваемости для месторождения Сибири.

 

 

 

З П З П

 

Все внутрипоровые поверхности (каверн, трещин и т.п.) обладают важным свойством – микрошероховатостью.

Для оценки смачиваемости используют классический подход, связанный с нахождением угла q, но он довольно условен. Характеристика имеет классификационный характер, и выглядит классификация следующим образом:

q=0° - поверхность полностью гидрофильна;

q=180° - поверхность полностью гидрофобна.

Наша поверхность в основном относится к смешанному (неравномерно смачиваемому) типу, т.к. нефть состоит из смоло-асфальтеновых компонентов, которые, адсорбируясь гидрофильными (по большей части своей) минералами, гидрофобизуют пласт, а плёнка адсорбированных тяжёлых углеводородов располагается неравномерно.

 

В газовых месторождениях присутствует до 28-30% адсорбированных углеводородов.

Поверхность, покрытая битуминозной массой, гидрофобная. Поэтому наряду с гидрофильной поверхностью у нас присутствуют отдельные участки гидрофобности, что даёт сложную мозаичную смачиваемость пласта.

Поэтому такие мозаичные поверхности делятся в зависимости от угла q на следующие типы:

если 0°<q<90° - преимущественно гидрофильная поверхность;

если 90°<q<180° - преимущественно гидрофобная поверхность.

Академиком Ребиндером был введён новый способ оценки смачиваемости: образец, предварительно насыщенный пластовой нефтью, изучают на какое-то физическое свойство, затем этот образец экстрагируют (удаляют все органические компоненты, в том числе смоло-асфальтеновый состав), снова проверяют на то же свойство и по разнице оценивают, какая часть была занята смоло-асфальтенами. Он предложил следующий параметр:

b=Qсм.в/Qсм.н - коэффициент Ребиндера,

где Qсм.в – теплота смачивания в водоносной среде;

Qсм.н – теплота смачивания в нефтеносной среде.

Ребиндер обнаружил, что если на горизонтальную поверхность воздействовать ПАВ, то деформационные свойства изменятся (поверхность станет мягче, так что её легче будет бурить).

По коэффициенту Ребиндера определяют характер смачивания:

если b>1, то пласт гидрофильный;

если b<1, то пласт гидрофобный.

Рассмотрим проблемы оценки угла смачивания q.

Реальная среда шероховата, стенки пор обладают микрошероховатостью, Из чего можно заключить, что угол смачивания различен в разных точках породы, значит, эта характеристика неопределённая, и угол q отражает лишь характеристики отполированных поверхностей.

Существуют и иные методы, например, метод капиллярной пропитки.

Этот способ связан с явлением самопроизвольного впитывания смачиваемой фазы, причём содержащийся в образце воздух выходит в окружающую среду.

Пропитка может быть:

 

 

По скорости пропитки мы можем оценить характер смачивания.