Отражение, преломление, стоячие волны. В этих опытах излучающий и приемный вибраторы надо располагать параллельно друг другу, например оба вертикально.
Отражением от металла можно воспользоваться для того, чтобы получить направленное излучение в виде почти плоской волны. Описанные выше опыты лучше производить поэтому с вибраторами, снабженными рефлекторами.
Следующий опыт показывает, что электромагнитная волна, проходя из одного прозрачного материала в другой, испытывает преломление, т. е. изменяется направление ее распространения. Явление преломления волн на границе двух веществ также принадлежит к числу общеволновых явлений, но мы ранее не останавливались на нем, так как наблюдать его на звуковых или поверхностных волнах в воде не особенно просто. (Легче всего наблюдать и исследовать преломление на световых волнах, и в разделе «Геометрическая оптика» это явление рассматривается подробно.)
Для опыта с преломлением электромагнитной волны длиной, например, 3 см надо изготовить из парафина или асфальта призму с преломляющим углом, равным примерно 30° . Отклонение волны от первоначального направления распространения составляет (в зависимости от материала призмы и длины волны) 15—20°.
На рис. 132 изображена постановка опыта для получения стоячей электромагнитной волны. Плоский металлический экран ставится против рефлектора излучающего вибратора так, чтобы отраженная волна распространялась навстречу падающей. Если теперь на пути от рефлектора к экрану перемещать приемный вибратор, то ток в гальванометре будет поочередно то увеличиваться (пучности), то уменьшаться (узлы).
Расстояние между двумя соседними пучностями или двумя соседними узлами равно, как мы знаем, l/2 (§ 47). Если нам заранее известна частота v колебаний генератора, то, измерив указанным путем Л, мы можем по формуле найти скорость с распространения электромагнитной волны в воздухе. При самых точных измерениях такого рода она оказывается совпадающей со скоростью света.
В описанном опыте остался пока невыясненным вопрос о том, какие пучности и узлы регистрирует приемный вибратор — колебаний электрического поля или колебаний магнитного поля. Ответ мы получим в следующем разделе.
Поперечность электромагнитных волн. Радиопеленгация. Оставаясь на каком-то неизменном расстоянии от
вертикального излучающего вибратора, повернем приемный вибратор из вертикального в любое горизонтальное положение. Мы увидим, что ток в индикаторе приемника падает при этом до нуля (рис. 133). Объяснить это можно только тем, что электрическое поле приходящей волны имеет вертикальное направление. Действительно, такое поле может перемещать заряды (вызывать ток) вдоль приемного вибратора, когда он вертикален, и не может этого делать, когда он горизонтален. Отсюда следует, что в описанном выше опыте со стоячей волной приемный вибратор выявлял узлы и пучности электрического поля.
Повторим такой же опыт, как на рис. 133, но возьмем вместо приемного вибратора проволочный виток. При этом получается следующее. Когда виток расположен в вертикальной плоскости, проходящей через излучающий вибратор, ток в нем есть. Но при всяком повороте витка на 90° от указанной плоскости ток в нем исчезает (рис. 134).
Мы знаем, что ток в витке (или катушке) наводится переменным магнитным полем только в том случае, если это поле пронизывает виток. Следовательно, отсутствие тока при расположениях витка, показанных на рис. 134 посередине и справа, объясняется тем, что магнитное поле приходящей волны направлено горизонтально и перпендикулярно к направлению излучения. Действительно, при этом оно пронизывает виток в первом положении и не пронизывает в двух других.
Мы приходим, таким образом, к выводу, что напряженность Е и индукция В электрического и магнитного полей в волне перпендикулярны друг к другу и к направлению распространения волны (рис. 135); при этом направление Е совпадает с направлением вибратора, а вектор В лежит в плоскости, перпендикулярной к вибратору.
Нами исследован здесь случай вертикального вибратора и горизонтального направления распространения волны. Исследование любых других направлений распространения показывает, что для всякого из них остается справедливым аналогичное расположение векторов Е и В: 1) оба они перпендикулярны к направлению распространения, а значит, и колебания их происходят перпендикулярно к этому направлению, т. е. электромагнитная волна поперечна; 2) вектор Е лежит в плоскостях, проходящих через излучающий вибратор, а вектор В — перпендикулярно к этим плоскостям (рис. 136).Поперечность колебаний является совершенно общим свойством всякой электромагнитной волны, не зависящим ни от выбора направления распространения, ни от характера излучателя. Таким же общим свойством является и взаимная перпендикулярность полей Е и В в электромагнитной волне. Мы еще вернемся к этому вопросу при изучении световых волн.
§ 60. Изобретение радио Поповым.
Мы уже говорили о том, как в опытах с электромагнитными волнами была подтверждена теория Максвелла. Опыты Герца быстро стали известны ученым всего мира; возникла мысль об использовании электромагнитных волн для связи и даже для передачи энергии без проводов. Однако никто не указал практических путей для осуществления этой идеи. Сам Герц, находясь под впечатлением исключительно слабого действия волн в его опытах, по-видимому, сомневался в возможности использования этих волн для связи. Таково было положение дела к началу работ русского физика и электротехника Александра Степановича Попова (1859—1905). Начав с повторения опытов Герца, Попов усовершенствовал приборы и уже через год (в 1889 г.) добился того, что искры в его приемных резонаторах были хорошо видны большой аудитории без специального затемнения помещения. Очень скоро Попову стало ясно, что для практического использования электромагнитных волн надо в первую очередь создать чувствительный и удобный приемник.
|
К 1894 г. Попов построил такой приемник, причем основные принципиальные особенности его устройства сохранились и в современной приемной аппаратуре. Что же представлял собой первый приемник Попова, и как он работал?
Для увеличения чувствительности приемника Попов использовал явление резонанса. Крупной заслугой Попова является изобретение высоко поднятой приемной антенны, которая значительно увеличивает дальность действия приемника и применяется в любой радиоприемной станции и поныне.
Вторая существенная особенность приемника Попова связана со способом регистрации волн. Для этой цели Попов применил не искру, а специальный прибор — когерер, незадолго до этого изобретенный Бранли и применявшийся для лабораторных опытов. Когерер устроен следующим образом. В стеклянной трубке помещены мелкие металлические опилки; в оба конца трубки введены провода, соприкасающиеся с опилками. В обычных условиях электрическое сопротивление между отдельными опилками сравнительно велико, так что и весь когерер обладает большим сопротивлением. Электромагнитная волна, создавая в цепи когерера беременный ток высокой частоты, приводит к тому, что между опилками проскакивают мельчайшие искорки, которые сваривают опилки между собой. В результате сопротивление когерера резко уменьшается. Чтобы вернуть когереру большое сопротивление и чувствительность к электромагнитным волнам, его необходимо встряхнуть. Попов включил когерер в цепь, содержащую батарею и телеграфное реле (рис. 139).
![]() |
Рис. 139. Схема первого приемника А. С. Попова, взятая из его статьи в Журнале Русского физико-химического общества (январь 1896 г.) |
До прихода электромагнитной волны сопротивление когерера велико, ток через него и через реле идет очень слабый и якорь реле не притянут к нижнему электромагниту. С появлением электромагнитной волны сопротивление когерера падает, ток сильно возрастает и якорь реле притягивается к электромагниту. Тем самым замыкается контакт С, подключая к батарее обыкновенный электрический звонок. Молоточек звонка ударяет по колокольчику (или записывает отброс на движущейся бумажной ленте), сигнализируя о приходе волны. Тотчас же при своем обратном ходе молоточек ударяет по когереру, восстанавливая его чувствительность.
Таким образом, Попов осуществил то, что называется релейной схемой (см. том II, § 178); ничтожная энергия приходящих волн используется не прямо для приема (например, появления искры), а для управления источником энергии, который питает регистрирующий аппарат. В современных приемниках когерера нет, его заменили электронные лампы, но принцип реле остается в силе: ведь электронная лампа по сути дела работает именно как реле. Слабые сигналы, подводимые к лампе, управляют энергией тех источников тока, которые питают эту лампу.
Вместе с тем Попов осуществил в своем приемнике принцип обратной связи, широко применяемый с тех пор в радиотехнике. Усиленный сигнал на выходе приемника (цепь звонка) автоматически действует на вход приемника (цепь когерера). Обратная связь (реализованная в данном устройстве электромеханическим способом) — это основной новый элемент в изобретении Попова.
7 мая 1895 г. Попов продемонстрировал действие своего приемника на заседании Русского физико-химического общества. Этот день справедливо считается днем рождения радио. В 1945 г. в ознаменование пятидесятилетия изобретения радио день 7 мая был постановлением Советского правительства объявлен ежегодным «Днем радио».
За сравнительно небольшой срок, истекший со времени изобретения радио, оно прошло огромный путь дальнейшего развития. Уже в первые годы после изобретения был сделан ряд существенных усовершенствований, многие из которых также принадлежат Попову. В частности, к ним относится и то, что Попов добавил к приемнику обыкновенный телеграфный аппарат, в результате чего приход электромагнитного сигнала не только отмечался звонком, но и черточкой на телеграфной ленте.
В дальнейших своих исследованиях, проводившихся совместно с П. Н. Рыбкиным, Попов сумел осуществить прием сигналов на слух. Оказалось, что при сигналах, слишком слабых для срабатывания когерера, плохие контакты между опилками в когерере действуют как детектор (§ 61) и в телефонной трубке, присоединенной к когереру, каждый сигнал отмечается звуком. Это открытие позволило еще более увеличить дальность радиосвязи.
Следующий крупный шаг в развитии радио, сделанный вскоре после его изобретения, состоял в усовершенствовании передатчика. Искровой промежуток был вынесен из антенны в специальный колебательный контур, который я служил источником колебаний. Антенна же, связанная с этим контуром, действовала теперь только в качестве излучателя волн.
Чрезвычайно важным моментом в развитии радио было изобретение американским ученым Ли де Форестом в 1906 г. электронных ламп, позволивших создать источники незатухающих электрических колебаний (§§ 31, 59). Именно это дало возможность полностью разрешить вопрос о передаче по радио не только телеграфных сигналов, но и звуков — речи, музыки и т. п., т. е. осуществить радиотелефонию и радиовещание.
§ 61. Современная радиосвязь.
![]() | ![]() |
Рис. 141. Телефонная модуляция | Рис. 142. Схема телефонной модуляции |
![]() |
Рис. 143. Как действует детектор |
![]() |
Рис. 144. Детектирование модулированного колебания |
Если передатчик излучает незатухающую синусоидальную волну, то в приемной антенне получится гармоническое колебание. Очевидно, никакой передачи сигналов таким путем осуществить нельзя. С помощью приемника мы можем только установить, работает передатчик или нет. Для того чтобы передать какие-либо сигналы, речь, музыку, телевизионные изображения И т. п., необходимо как-то менять характер излучения передатчика, например менять амплитуду его колебаний. Этот процесс называется модуляцией. Простейший способ телеграфной модуляции состоит в прерывании
излучения с помощью ключа, т. е. в посылке коротких и длинных сигналов — «точек» и «тире» азбуки Морзе (рис. 140). При телефонной модуляции амплитуда излучения меняется не путем включения и выключения, а плавно — с передаваемыми звуковыми частотами (рис. 141).
![]() |
Рис. 145. Схема детекторного радиоприемника |
На рис. 142 показана схема, поясняющая процесс телефонной модуляции. В отличие от рис. 58 здесь между сеткой и катодом лампы включена вторичная обмотка небольшого повышающего трансформатора, в первичную обмотку которого включены обычный телефонный капсюль (угольный микрофон) и батарея. Под действием звуковых волн, падающих на мембрану микрофона, угольный порошок в нем подвергается давлению, которое меняется с частотой звука. В результате с этой же частотой меняется сопротивление микрофона, а значит, и ток в первичной обмотке трансформатора. Это приводит к появлению переменной э. д. с. во вторичной обмотке трансформатора, т. е. на сетку лампы попадает переменное напряжение звуковой частоты. Амплитуда высокочастотных колебаний, генерируемых в контуре посредством этой лампы, меняется вместе с этим низкочастотным напряжением на ее сетке, а следовательно, так же меняется и интенсивность радиоволн, излучаемых антенной.
Разумеется, современная передающая радиоаппаратура устроена сложнее, но описанная схема передает основные ее черты. Мощность современных широковещательных радиостанций достигает многих сотен и даже тысяч киловатт. Для таких станций созданы специальные радиолампы, размеры которых иной раз превосходят рост человека. Родиной мощных широковещательных станций является наша страна. Уже в 1922 г. в Москве была построена самая крупная по тому времени радиостанция мощностью 12 кВт, а в 1932 г. в Москве же впервые в мире была введена в действие станция мощностью 500 кВт. Вообще в строительстве мощных радиостанций, разработке для них ламп, антенных сетей и т. п. наша страна занимает одно из первых мест в мире. Мы обязаны этим целому ряду выдающихся советских радиоспециалистов: М. А. Бонч-Бруевичу, М. В. Шулейкину, А. Л. Минцу и др.
К антенне радиоприемника приходят модулированные излучения множества одновременно работающих передающих станций. Кроме того, электрические колебания в приемной антенне возбуждаются под действием всевозможных источников помех (например, атмосферных электрических разрядов, искрящих контактов электрических машин и приборов и т. п.). Задача приемника состоит в том, чтобы: 1) выделить из всей этой смеси колебаний передачу интересующей нас станции, 2) в достаточной степени усилить выделенные колебания и 3) получить из этих высокочастотных модулированных колебаний сигналы (колебания со звуковыми частотами, телеграфные или телевизионные сигналы и т. п.), которыми модулировано излучение станции.
Первая задача решается, как мы знаем, при помощи резонанса (§ 29). Приемник содержит колебательные контуры (в простейшем случае — один контур), которые выделяют из всего сложного набора электрических колебаний в антенне довольно узкую полосу частот (так называемая «полоса пропускания»). Меняя настройку контуров приемника, мы передвигаем его «полосу пропускания» по шкале частот. Настройка на данную радиостанцию означает такую установку «полосы пропускания» приемника, при которой частота станции попадает в эту полосу. При этом, конечно, в «полосу пропускания» попадает и некоторая доля колебаний от источников помех. Прием возможен только в том случае, если колебания от принимаемой станции не слишком слабы по сравнению с уровнем мешающих колебаний. Вторая задача — усиление выделенных посредством резонанса колебаний — решается с помощью либо электронных ламп (см. том II, § 106), либо полупроводниковых триодов (см. том II, § 110). Усиливая колебания, эти приборы и работают в качестве «реле»: выигрыш в интенсивности колебаний получается за счет энергии тех источников (например, батарей), которые питают лампу или транзистор. Если для усиления используется электронная лампа, то слабые колебания напряжения, созданные электромагнитной волной в колебательном контуре приемника, подводятся к сетке этой лампы и вызывают гораздо более сильные колебания в цепи ее анода. С анода одной лампы усиленные колебания можно подвести к сетке следующей лампы и усилить их еще больше (многокаскадное усиление). В настоящее время электронные лампы все больше вытесняются полупроводниковыми триодами и диодами (см. том II, § 110), которые гораздо меньше по габаритам и требуют значительно меньших «питающих» напряжений и мощностей.
Наконец, третья задача — восстановление низкочастотных модулирующих сигналов из высокочастотных модулированных колебаний — решается посредством детекторов — приборов, которые проводят ток в одном направлении лучше, чем в противоположном. В современных радиоприемниках в качестве детектора используются опять-таки электронные лампы или полупроводниковые диоды, к которым относятся и так называемые точечноконтактные диоды. В последних выпрямляющим действием обладает контакт между полупроводниковым кристаллом и металлическим острием. Выпрямляющие контакты такого типа (работающие к тому же без всяких источников постоянного питания) были известны как кристаллические детекторы и применялись в радиотехнике еще до изобретения электронных ламп. Поясним, в чем заключается действие детектора.
Благодаря неодинаковому сопротивлению детектора для двух направлений тока форма (осциллограмма) переменного тока, текущего через детектор, отличается от формы подведенного к нему напряжения (рис. 143). В то время как колебания напряжения имеют одинаковый размах (амплитуду) в обе стороны от нуля (рис. 143, а), колебания тока «подрезаны» с той стороны, в которую детектор проводит хуже (рис. 143, б). Но такой несимметричный переменный ток можно представить как сумму постоянного тока (кривая 1, рис. 143, в) и симметричного переменного тока (кривая 2). Таким образом, если подвести к детектору синусоидальное высокочастотное напряжение, то через детектор, кроме переменного тока высокой частоты, будет течь еще и постоянный ток, который может, например, заставить отклоняться гальванометр, включенный последовательно с детектором.
Допустим теперь, что амплитуда высокочастотного напряжения, подводимого к детектору, не постоянна, а модулирована — изменяется с низкой частотой (рис. 144, а). В детекторе получится несимметричный ток, причем тоже модулированный (рис. 144, б). Если подобно предыдущему разложить такой ток, выделив из него симметричное высокочастотное колебание (кривая.2, рис. 143, в), то вторым слагаемым будет уже не постоянный ток, а ток, меняющийся с низкой частотой — частотой модуляции (кривая 1). Если последовательно с детектором включить телефон, то этот ток низкой (звуковой) частоты заставит колебаться мембрану телефона и будет нами услышан. Такая простейшая комбинация детектора с телефоном применялась в так называемом детекторном приемнике (рис. 145), которым широко пользовались до появления приемников с электронными лампами.
Детекторный приемник работает не по принципу реле, а использует непосредственно ту энергию, которую улавливает приемная антенна. Детектор с телефоном присоединяется к резонансному колебательному контуру, причем телефон шунтируется конденсатором, через который легко проходит высокочастотная часть детекторного тока. Достоинством детекторного приемника по сравнению с ламповыми является полное отсутствие источников питания, но отсюда же проистекает и его основной недостаток, из-за которого он был вытеснен ламповыми приемниками,— малая чувствительность.
Сущность телевизионной передачи состоит в следующем. На передающей станции электронный пучок с огромной скоростью бегает не по экрану, а по сложному многоячейковому фотоэлементу, так называемому иконоскопу (от греческих слов «иконос» — изображение, «скопио» — наблюдение). На этот фотоэлемент с помощью объектива отбрасывается передаваемое изображение. Каждая ячейка иконоскопа работает в те моменты, когда на нее попадает электронный пучок. Специальные развертывающие напряжения, подводимые к управляющим пластинам осциллографа, заставляют электронный пучок пробегать по всей поверхности иконоскопа за 1/25 секунды (конец лучка прочерчивает при этом 625 горизонтальных строк, лежащих почти вплотную одна под другой). Сила тока в цепи иконоскопа в каждый момент времени пропорциональна освещенности той ячейки иконоскопа, на которую в этот момент попадает электронный пучок. Поэтому колебания силы тока в цепи иконоскопа передают распределение интенсивности света во всех последовательно «просматриваемых» точках передаваемой картины (кадра).
Получаемые от иконоскопа электрические колебания подводятся к радиопередатчику и модулируют излучаемую им радиоволну подобно тому, как переменный ток в цепи микрофона модулирует радиоволну при передаче звука. Таким образом, каждую секунду радиоволна уносит «отпечаток» 25 полных кадров, каждый из которых состоит из 625 строк.
На приемной станции валик и лампочка фототелеграфа тоже заменены электронным осциллографом, но с обычным экраном, светящимся под ударами электронов (так называемый кинескоп). После усиления и детектирования принятой волны в приемнике получается точно такой же переменный ток, какой модулировал волну в передатчике. Этот ток используется для того, чтобы управлять интенсивностью электронного пучка в кинескопе. Яркость же свечения экрана кинескопа пропорциональна интенсивности электронного пучка. Таким образом, яркость пятнышка на приемном экране меняется со временем соответственно освещенности тех точек передаваемого изображения, через которые пробегает электронный пучок в передатчике.
Быстрое и точное определение расстояний между различными точками земной поверхности, отрасль радиотехники — радиогеодезия. Быстрота измерения позволяет проводить его и в том случае, если одна из точек движется (корабль, самолет). Поэтому такой способ измерения расстояний находит себе применение и в практике вождения кораблей и самолетов — радионавигации.