Непараметрические критерии
Непараметрические методы обладают меньшей чувствительностью, чем параметрические. Применение рассмотренных в предыдущем разделе параметрических критериев было связано с целым рядом допущений. Например, сравнивая выборочные средние значения с помощью t-критерия, принимались следующие предположения: обе выборки являются случайными, т. е. каждая из них получена в результате независимых измерений; обе выборки получены из генеральных совокупностей, имеющих нормальное распределение; дисперсии генеральных совокупностей равны между собой.
На практике эти предположения строго никогда не выполняются, поэтому применение параметрических критериев всегда связано с опасностью ошибочных выводов, возникающей из-за нарушения принятых допущений. В математической статистике в этом случае применяются непараметрические методы, применение которых зависит от меньшего числа допущений.
Условия применения непараметрических методов: 1) несоответствие распределения значений в генеральной выборке нормальному закону; 2) слишком малая выборка, чтобы судить о законе распределения; 3) невыполнение требования о гомогенности дисперсии при сравнении средних значений для независимых выборок; 4) наличие в выборке выбросов (экстремально больших или экстремально малых значений).
Важную группу непараметрических критериев составляют ранговые критерии. Ниже рассматриваются некоторые из ранговых критериев. Но предварительно следует познакомиться с понятием «ранг», играющим здесь ключевую роль.
Ранги
Ранжированная выборка получается, если расположить выборочные данные в порядке возрастания или убывания. Рангом выборочного значения называется порядковый номер этого значения. Ранг однозначно определен порядковым номером, если в выборке нет совпадающих значений. Если же они есть, то их ранги определяются как среднее арифметическое порядковых номеров совпадающих значений. Рангами могут быть представлены данные, выраженные в порядковой шкале, в том числе результаты наблюдения качественных признаков, когда невозможно измерить точное численное значение признака, но можно определить очередность значений по принципу «больше-меньше» (например, места в спортивных состязаниях, результаты судейства в баллах, оценки за экзамен и т. п.).
Пример. Получена выборка (n = 10), после ранжирования она выглядит следующим образом: | Номер п/п | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
xi | 12 | 14 | 15 | 15 | 15 | 16 | 18 | 19 | 19 | 22 | |
R | 1 | 2 | 4 | 4 | 4 | 6 | 7 | 8,5 | 8,5 | 10 |
Значения с порядковыми номерами 3, 4, 5 и 8, 9 совпали, поэтому их ранги R определяются как R = (3 + 4 + 5)/3 = 4 и R = (8 + 9)/2. Таким образом, ранг не обязательно будет целым числом.