Трансгенные животные как продуценты биологически активных белков
В линиях трансгенных животных можно получать трансгенные белки. Такие животные легко размножаются, содержание их недорого.
Большой интерес представляет трансгенная экспрессия в эпителиальные клетки молочной железы с целью выхода новых белков с молоком. В настоящее время уже идентифицированы участки ДНК, которые являются промоторами синтеза aS 1-казеина, (3-казеина, a-лактоальбумина, (3-лактоглобулина и др.
Из молока трансгенных животных путем использования промоторов уже получают ряд рекомбинантных белков, которые являются биологически активными, важными для человека.
58вопрос
Успехи и достижения биотехнологии. Нанобиотехнология. ДНК-микрочипы и т.д
Достижения биотехнологии
Биотехнология – это наука, изучающая возможность использовать живые организмы или продукты их жизнедеятельности для решения определенных технологических задач.
С помощью биотехнологий, происходит обеспечение определенных человеческих потребностей, например: разработка медицинских препаратов, модификация или создание новых видов растений и животных, что увеличивает качество пищевых продуктов.
Биотехнология в современной медицине
Биотехнология, как наука, зарекомендовала себя в конце ХХ века, а именно в начале 70-х годов. Все началось с генетической инженерия, когда ученые смогли перенести генетический материал из одного организма к другому без осуществления половых процессов. Для этого была использовано рекомбинантная ДНК или рДНК. Такой метод применяется для изменения или улучшения определенного организма.
Чтобы создать молекулу рДНК нужно:
· извлечь молекулу ДНК из клетки животного или растения;
· обработать изолированную клетку и плазмиду, а затем смешать их;
· затем, измененная плазмида переносится в бактерию, а та в свою очередь приумножает копии информации, что были внесены в нее.
Медицинские биотехнологии подразделяются на 2 большие группы:
- Диагностические, которые, в свою очередь, бывают: химическими (определение диагностических веществ и параметров обмена); физическими (определение физических полей организма);
Лечебные.
Биотехнологии в современной науке
Биотехнологии в современной науке несет огромную пользу. За счет открытия генной инженерии стало возможным выведения новых сортов растений и пород животных, которые принесут пользу сельскому хозяйству.
Изучения биотехнологии связано не только лишь с науками биологического направления. В микроэлектронике разработаны ион-селективные транзисторы на основе полевого эффекта (HpaI).
Биотехнология необходима для повышения нефтеотдачи нефтяных пластов. Наиболее развитым направлением является использование биотехнологии в экологии для очистки промышленных и бытовых сточных вод.
В развитие биотехнологии внесли свой вклад многие другие дисциплины, именно поэтому биотехнологии стоит отнести к комплексной науке.
Еще одной причиной активного изучения и усовершенствования знаний в биотехнологии стал вопрос в недостатке (или будущем дефиците) социально-экономических потребностей.
аглядная биотехнология. Генная и клеточная инженерия
Генетическая и клеточная инженерия в сочетании с биохимией – это основные сферы современной биотехнологии.
Клеточная инженерия – выращивание в специальных условиях клеток различных живых организмов (растений, животных, бактерий), разного рода исследования над ними (комбинация, извлечение или пересадка).
Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4.
Генетическая (или генная) инженерия – отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы.
Наглядная биотехнология. Генная и клеточная инженерия
Генетическая и клеточная инженерия в сочетании с биохимией – это основные сферы современной биотехнологии.
Клеточная инженерия – выращивание в специальных условиях клеток различных живых организмов (растений, животных, бактерий), разного рода исследования над ними (комбинация, извлечение или пересадка).
Самой успешной считается клеточная инженерия растений. При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4.
Генетическая (или генная) инженерия – отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы.
Биотехнологии клонирования
Клонирование – это процесс получения клонов (то есть потомков полностью идентичных прототипу). Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном.
В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий.
Уже в конце ХХ века ученые начали активное обсуждение клонирования человека. Таким образом, термин «клон» стал употребляться в СМИ, а позже и в литературе и искусстве.
Что касается бактерий, то у них клонирование – это практически единственный способ размножения. Именно «клонирование бактерий» употребляется в том случаи, когда процесс искусственный и им управляет человек. Этот термин не касается естественного размножения микроорганизмов.
Клеточная биотехнология растений
Клеточная биотехнология основывается на применении клеток, тканей и протопластов. Чтобы успешно управлять клетками, необходимо отделить их от растения и создать им все необходимые условия для успешного существования и размножения вне организма растения. Такой метод выращивания и размножения клеток носит название «культуры изолированных тканей» и получил особое значение из-за возможности применения в биотехнологии.
Биотехнологии в современном мире и жизни человека
Потенциал, который открывает биотехнология для человека, велик не только в фундаментальной науке, но и в других сферах деятельности и областях знаний. При использовании биотехнологических методов стало возможно массовое производство всех необходимых белков.
Значительно проще стали процессы получения продуктов ферментации. В будущем биотехнологии позволят улучшать животных и растений. Учеными рассматриваются варианты борьбы с наследственными болезнями при помощи генной инженерии.
Генная инженерия, как основное направление в биотехнологии, значительно ускоряет решение проблемы продовольственного, аграрного, энергетического и экологического кризисов.
Самое большее влияние биотехнология оказывает на медицину и фармацевтику. Прогнозируется, что в будущем станет возможным диагностика и лечение тех заболеваний, которые имеют статус «неизлечимых».
Этические аспекты некоторых достижений в биотехнологии
После того, как стало известно, что некоторые научные лаборатории не только проводили опыты на человеческих эмбрионах, но и пытались произвести клонирование людей – пошла волна бурного обсуждения этого вопроса не только среди ученых, но и среди обычных людей.
В биотехнологии можно выделить две этические проблемы, связанные с клонированием человека:
терапевтическое клонирование (культивация человеческих эмбрионов для применения их клеток с целью лечения
Современные достижения и проблемы биотехнологии
При помощи биотехнологии было и будет получено огромное количество продуктов для здравоохранения, сельского хозяйства продовольственной и химической промышленности. Стоит упомянуть, что многие из продуктов никаким другим способом не могли быть получены.
Что касается проблем, так основным образом – это этические аспекты, связанные с тем, что общество отрицает и считает негативным клонирование человека или человеческого эмбриона.
Нанобиотехнологии — это раздел в нанотехнологиях, в котором изучаются взаимодействия наночастиц с живыми системами, а также разрабатываются методы моделирования и практического применения биологических наноструктур, нанопроцессов и генной инженерии в биологии, медицине, экологии, сельском хозяйстве и других отраслях экономики. Нанобиотехнологии — прогрессирующая область науки, нацеленная на создание новых методов познания биологических систем, изучение взаимодействия наночастиц и молекул ДНК для разработки новых методов генной инженерии, использование механизмов транспорта веществ через биологические мембраны с применением наночастиц, а также другие методы и методики из арсеналов нанотехнологий.
Вместе с тем в нанотехнологиях есть направление, в котором исследуются биологические наномолекулы с целью создания различных молекулярных устройств. Это направление получило название бионанотехнология. В рамках этого направления разрабатываются биосенсоры для выявления веществ, присутствующих в окружающей среде или организме человека, устройства для детектирования определенных нуклеотидных последовательностей с целью обнаружения мутаций. Благодаря «содружеству» с нанотехнологией и физическими методами исследования в бионанотехнологии используются квантовые капли или квантовые точки.
ДНК–чипы представляют собой уникальный аналитический инструмент, позволяющий определять наличие в анализируемом образце (как правило, биологического происхождения) заданных последовательностей ДНК (т.н. гибридизационный анализ). Проведение анализа с помощью ДНК–чипов обходится в несколько раз дешевле, чем при использовании альтернативных технологий (электрофорез, ПЦР в реальном времени) и допускает, при наличии детектора несложной конструкции, работу вне лаборатории.
Впервые ДНК–чипы были использованы в исследованиях в конце 80-х годов прошлого века. В основе этого теперь уже широко распространенного метода, позволяющего одновременно анализировать экспрессию множества генов, лежит принцип узнавания мРНК-овых или кДНК-овых мишеней посредством их гибридизации с иммобилизованными на микрочипе одноцепочечными фрагментами ДНК. Современный ДНК-микрочип состоит из тысяч дезоксиолигонуклеотидов (зондов, или проб), сгруппированных в виде микроскопических точек и закреплённых на твёрдой подложке. Каждая точка содержит несколько пикомолей ДНК с определённой нуклеотидной последовательностью. Олигонуклеотиды ДНК-микрочипа могут быть короткими участками генов или других функциональных элементов ДНК и используются для гибридизации с кДНК или мРНК (кРНК). Гибридизация зонда и мишени регистрируется и количественно характеризуется при помощи флюоресценции или хемилюминесценции, что позволяет определять относительное количество нуклеиновой кислоты с заданной последовательностью в образце.
В обычном ДНК-микрочипе зонды ковалентно прикрепляются к твёрдой поверхности — стеклянному или кремниевому чипу. Другие платформы, например, выпускаемые Illumina, используют микроскопические шарики вместо больших твёрдых поверхностей.
НК-микрочипы используют для анализа изменения экспрессии генов, выявления однонуклеотидных полиморфизмов, генотипирования или повторного секвенирования мутантных геномов. Микрочипы отличаются по конструкции, особенностям работы, точности, эффективности и стоимости.
ДНК-микрочипы:
- кДНК-микрочипы
(двукрасочные с флуоресц. детекцией)
· oлигонуклеотидные
(двукрасочные с флуоресц. детекцией)
· олигонуклеотидные
(Affymetrix, однокрас. с флуоресц. детекцией)
· мембранные к-ДНК-микрочипы
(с радиоакт. детекцией)
- гелевые к-ДНК-чипы
(ИМБ РАН)
Белковые микрочипы
Зоология
59вопрос
Общая характеристика простейших. Систематика простейш
Систематика:
Тип: Protozoa
Класс: Sarcodina
Класс: Flagellata
Класс: Sporozoa
Класс: Infuzoria.
Класс Саркодовые. Основная характерная черта – способность образовывать псевдоподии, или ложноножки, служащие для движения и захватывания пищи.
Класс Жгутиковые. Характерно наличие 1, 2, а иногда и более жгутиков, служащих для передвижения. Иногда имеется ундулирующая мембрана. Форма тела обычно постоянная. Являются гетеротрофами.
Класс Споровики. Характерная черта – отсутствие у зрелых форм каких-либо органоидов движения, а так же прохождение сложных жизненных циклов с чередованием полового и бесполового размножения. Они не имеют органов питания и пищеварения. Питание, дыхание , выделение производится всей поверхностью тела. Большинство является паразитами.
Класс Инфузории. Наиболее сложно устроенные простейшие. Органоиды движения – реснички. В каждой особи 2 ядра.
Тип: Protozoa
Класс: Sarcodina
Вид: Entamoebahistolytica
Морфологические особенности: в кишках человека встречается в 3 формах: крупной вегетативной тканевой, патогенной (formamagna), мелкой вегетативной, обитающей в просвете кишок (formaminuta), цисты. Характерная особенность цист – наличие в них 4 ядер. Размеры цист от 8 до 16 мкм.
Цикл развития: в кишки человека может попасть в форме цисты. Здесь оболочка проглоченной цисты растворяется и из нее выходят 4 малые амебы (formaminuta). Их диаметр 12-25 мкм. Обитает эта форма в содержимом кишок. Видимого ущерба здоровью не наносит. Если условия не благоприятствуют переходу в патогенную форму, то амебы, попадая в нижний отдел кишок, инцистиируются и выводятся во внешнюю среду с фекалиями. Если условия способствуют переходу в патогенную форму (formamagna), амеба увеличивается до 23 мкм, но может и до 50 мкм, и приобретает способность выделять ферменты, растворяющие тканевые белки. Вследствие этого разрушается эпителий слизистой оболочки кишок, амебы проникают в ткань и образуют кровоточащие язвы толстой кишки. В цитоплазме крупной формы видны в цитоплазме заглоченные эритроциты. В период затухания болезниformamagnaперемещается в просвет кишки, где переходит вformaminuta, а затем в цисту. Различные неблагоприятные условия способствуют переходуformaminutaвformamagna.
Патогенез: амебы, внедряясь в стенки кишок образуют кровоточащие язвы.
характерные черты подцарства Простейшие:
1. Тело представлено одной клеткой, функционирующей как целостный организм. Два основных компонента – ядро и цитоплазма. В цитоплазме находятся органеллы и включения.
2. Ядро простейших типичного эукариотного строения. Одно или несколько. Во всех случаях деления ядра присутствует митоз.
3. Цитоплазма дифференцируется на 2 слоя: наружный, более светлый и гомогенный (эктоплазма) и внутренний, зернистый (эндоплазма). Органеллы – это части клетки, имеющие постоянную мембранную структуру и выполняющие определенную функцию. К органеллам общего назначения относят митохондрии, комплекс Гольджи, ЭПС, рибосомы и т.д. Органеллами специального назначения считают пищеварительные и сократительные вакуоли, жгутики, реснички. Эти структуры обеспечивают функции движения, питания, защиты, выделения, осморегуляции.
4. Покровные органеллы – плазматическая мембрана, которая может быть усилена дополнительными структурами, увеличивающими ее плотность. Например, пелликула у эвглены или наружный кальциевый скелет у фораминифер.
5. Органеллы движения могут быть временными – псевдоподии, или постоянными (жгутики, реснички).
6. По типу ассимиляции протисты могут быть гетеротрофами или миксотрофами. Питаются бактериями, органическими остатками = фагоцитоз. В пищеварительных вакуолях идет процесс переваривания. Его продукты могут накапливаться в виде включений (запасные питательные вещества или отбросы).
7. Жидкие продукты обмена и излишки воды удаляются сократительными вакуолями. У паразитических форм питание осмотическое.
8. Дыхание осуществляется всей поверхностью тела с частичным участием сократительной вакуоли.
9. Раздражимость – ответная реакция организма на внешние воздействия, проявляющаяся таксисами.
10. Размножение: бесполое, половое и половой процесс. Бесполое размножение осуществляется митотическим делением ядер, цитоплазмы. В результате клетка делится бинарным делением пополам (амеба), продольно (эвглена), поперечно (инфузории). Возможно множественное деления ядра – шизогония у споровиков. При половом размножении клетка простейшего функционально преобразуется в гамету. Слияние гамет с образованием зиготы = копуляция. У инфузорий отмечен половой процесс – обмен генетической информацией при слиянии двух генеративных ядер без изменения числа особей.
11. Жизненный цикл простейших – периодически повторяющийся отрезок развития вида между двумя одноименными фазами. Или: Период существования организма от момента его образования путем деления материнской клетки или образования зиготы до ее собственного деления или смерти.
12. Способность к инцистированию.
Ароморфозы:
· Увеличение числа органелл движения;
· Усложнение ядерного аппарата (ядерный дуализм);
· Фотосинтез.
60воОбщая характеристика радиально-лучевых животных. Систематика и характеристика кишечно-полостных и гребневиков.
Животные с радиальной (лучевой) симметрией.
Животные – одна из основных групп живых существ, выделяемая в царство Animalia. Все животные – гетеротрофные организмы, т.е. они не могут самостоятельно синтезировать органические вещества и питаются уже готовой органикой.
Животных несколько миллионов видов; среди них есть те, кто живёт в воде, на суше или в воздухе, свободные и прикреплённые к субстрату, большие и маленькие. При этом в биологии (зоологии) используются различные методики, по которым на основании определённого признака производится классификации животных организмов.
Одним из важных признаком используемых в биологической систематике является симметрия тела.
У животных существуют два типа симметрии:
· двусторонняя (когда тело можно разделить на две зеркальные половинки только одной плоскостью) и
радиальная или лучевая (когда таких плоскостей несколько).
животным с лучевой симметрией относят кишечнополостных и гребневиков.
Тип кишечнополостных (Coelenterata) одни из наиболее многообразных типов животных организмов в природе. Это примитивные многоклеточные животные, с радиальной симметрией тела, часто придающей им сходство с цветком.
Эти животные представляют, по сути, мешок, стенка которого состоит из наружного и внутреннего слоёв. Наружный слой (эктодерма) состоит из сократительных и стрекательных клеток, внутренний из пищеварительных и железистых клеток. Стрекательные клетки служат для нападения и защиты. Внутреннюю часть тела занимает кишечная полость, открываемая наружу ротовым отверстием, через которое происходит заглатывание пищи. Дыхательная, кровеносная и выделительная системы при этом отсутствуют. Нервная система представляет собой сеть, образованную нервными клетками. Органы зрения (светочувствительные глазки) и равновесия есть только у медуз.
Щупальца кишечнополостных – длинные, тонкие, вооружённые микроскопическими стрекательными капсулами, которые содержат нить, которая может с большой силой разворачиваться, вонзаясь в тело мелких животных.
Кишечнополостные – водные (преимущественно морские) одиночные или колониальные животные. Практически все кишечнополостные – хищники. Общие количество видов кишечнополостных известных на данный момент науке насчитывается примерно 10 000 видов, которые делятся на три класса: (1) гидроидных, (2) сцифоидных и (3) коралловых полипов. Первые два класса иногда объединяются в подтип медузовых (Medusozoa).
1. В классе гидроидных (Hydrozoa) доминируют полипы, обычно образующие путём почкования ветвистую колонию из огромного числа особей – гидрантов. От полипов отпочковываются медузы, живущие, как правило, недолго; некоторые виды не образуют медуз.
рхний ряд, слева направо: обыкновенная гидра, несравненная кунина (паразитирует на более крупной медузе), калифорнийская аллопора, коленчатая обелия. Нижний ряд, слева направо: огненный коралл, светящаяся кладонема, тихоокеанская порприта, краспедакуста |
2. Класс сцифоидные (Scyphozoa) выделяется свободноплавающими медузами, размеры которых колеблются от нескольких миллиметров до 2–3 м (цианея); щупальца цианеи вытягиваются в длину до 20 м. Полип развит слабо, иногда его нет совсем. Сцифомедузы живут несколько месяцев.
Верхний ряд, слева направо: атолла ван Хоффа, корнерот, медуза-кочан, ушастая медуза. Нижний ряд, слева направо: таинственная хризаора, молочная хризаора, гигантская цианея, фацеллофора |
3. Класс коралловые полипы (Anthozoa) – колониальные (реже одиночные) морские организмы. Тело длиной от нескольких миллиметров до одного метра обладает шестилучевой или восьмилучевой симметрией. Стадия медузы отсутствует. Ротовое отверстие соединяется с кишечной полостью глоткой. У полипов одной колонии кишечная полость общая, и пища, добытая одним из полипов, становится достоянием всей колонии. Около 6000 видов коралловых полипов обитают во всех морях с достаточно высокой солёностью.
ерхний ряд, слева направо: мёртвые пальцы, красный коралл, оранжевое морское перо, удивительная виргулярия. Нижний ряд, слева направо: чёрный коралл, цериантус Ллойда, стеклянная роза, гигантский карибский анемон |
Некоторые колониальные полипы (например, мадрепоровые кораллы) окружают себя массивным известковым скелетом. Когда полип умирает, его скелет остаётся. Колонии полипов, разрастаясь в течение тысячелетий, образуют коралловые рифы и целые острова. Самый крупный из них – Большой Барьерный риф – тянется вдоль восточных берегов Австралии на 2300 км; его ширина составляет от 2 до 150 км.
Тип гребневиков (Ctenophora) ранее относили к кишечнополостным; сейчас эти животные выделены в отдельный тип. Студенистое прозрачное тело гребневиков размерами от 2 мм до 2,5 м имеет двухлучевую симметрию. Тело имеет вид мешка, на одном конце которого находится рот, а на другом – органы равновесия. Гребневики плывут ртом вперёд при помощи специальных гребных пластинок – склеенных между собой пучков ресничек.
отличие от кишечнополостных гребневики лишены стрекательных клеток; добычу ловят клейкие клетки наружного эпителия. Пища захватывается непосредственно ртом или особыми ловчими щупальцами, передающими её ко рту. Затем через глотку пища поступает в кишечную полость. Пищеварительная и нервная системы развиты более сильно. Гребневики – гермафродиты; чередования поколений у них не происходит. Гребневики – хищники, питающиеся планктоном, мальками рыб и другими гребневиками.
Более 100 видов гребневиков делятся на два класса: щупальцевые (Tentaculata) и бесщупальцевые (Atentaculata). Распространены на разных глубинах во всех моря
Тип Кишечнополостные
Кишечнополостные — исключительно водные, главным образом морские многоклеточные животные. Есть свободноплавающие и сидячие, одиночные и колониальные формы.
Известно около 11 тыс. видов этих животных.
Общая характеристика кишечнополостных
Симметрия
Для кишечнополостных характерна радиальная, или лучевая, симметрия: через их тела можно провести несколько плоскостей симметрии.
Жизненные формы
Выделяют две жизненные формы кишечнополостных: медуза и полип, которые, как правило, чередуются в жизненном цикле.
Медуза (от др.-греч. Medusa [медуза], имени мифологического чудовища — женщины со змеями вместо волос на голове, взгляд которой обращал в камень) — это свободноплавающая форма, передвигающаяся реактивным способом. Обычно представляет собой половое поколение.
Полип (от др.-греч. polypus [полипус] — «многоногий») — это прикреплённая, неподвижная или малоподвижная форма, бесполое поколение, размножающееся обычно почкованием.
У некоторых видов чередование поколений утрачено: имеется только одна жизненная форма, которая развивается из яйца и она же, созревая, производит гаметы. \Гребневики (лат. Ctenophora) — тип многоклеточных животных. Это морские, преимущественно планктонные животные (реже ползающие или сидячие). Их научное название происходит от латинизированных греческих слов ctena (гребень) и pherein (носить) и связано с имеющимися у каждого гребневика характерными «гребнями» — рядами гребных пластинок, образованных сросшимися ресничками. Размеры колеблются от 2—3 мм до 3 метров. Известно от 100 до 150 видов (точный подсчет затруднен из-за слабой разработанности системы гребневиков
В прошлом гребневиков относили вместе со стрекающими к типу кишечнополостных, однако в настоящее время гребневиков и стрекающих считают самостоятельными типами, степень родства между которыми не ясна.
Гребневик Мнемиопсис питается планктоном.
Гребневик Берое питается мнемиопсисом, тем самым сдерживая популяцию последне
Гребневики обладают двулучевой радиальной симметрией, по сути приближающейся к билатеральной. Основные элементы симметрии — уплощённая глотка, каналы гастральной системы (а у щупальцевых гребневиков и щупальца), расположенные в плоскости, перпендикулярной плоскости глотки, четыре ресничных бороздки, расходящихся от аборального (противоположного ротовому отверстию) полюса, дихотомически ветвящиеся и переходящие в восемь меридианальных рядов гребных пластинок. Отсутствие различий между антимерами не даёт возможности выделить брюшную и спинную стороны, поэтому симметрия остается радиальной, а не билатеральной, несмотря на то, что лучей всего два.
Тело гребневиков снаружи покрыто однослойным эпителием. Ресничные клетки эпителия образуют на аборальном полюсе статоцист, от которого отходит четыре ресничных бороздки. Ресничные бороздки дихотомически ветвятся и образуют восемь меридианальных рядов ресничных клеток, образующих гребные пластинки. Каждая гребная пластинка представляет собой гребень из сросшихся ресничек. У щупальцевых гребневиков из специальных углублений растут два щупальца, покрытых выростами, или тентиллами. В покровном эпителии щупалец (в основном, на тентиллах) имеются клетки, снабжённые клейкими капсулами, так называемые коллобласты. Коллобласты позволяют щупальцам играть роль ловчего аппарата: выступающая над поверхностью часть клетки несёт липкие гранулы, к которым могут приклеиваться мелкие планктонные организмы.
Кишечная полость начинается уплощённой глоткой, покрытой мерцательным эпителием эктодермального происхождения. Энтодермальная часть кишки разветвленная, в связи с чем её нередко называют гастро-васкулярной (желудочно-сосудистой) системой. От центральной камеры в плоскости, перпендикулярной плоскости глотки, отходят два радиальных канала. Каждый из этих каналов дважды дихотомически ветвится. Концы ветвей радиальных каналов открываются в меридианальные, проходящие под рядами гребных пластинок. От вершины центральной камеры по направлению к аборальному полюсу отходит четыре канальца.
Между покровным эпителием и полостью кишечника расположен толстый слой мезоглеи, по большей части состоящий из студенистого межклеточного вещества.
Мускулатура состоит из гладких мышечных клеток, образующих два тонких слоя под покровным эпителием (наружный слой состоит из меридионально-ориентированных мышечных волокон, внутренний — из кольцевых), радиальные тяжи, залегающие в толще мезоглеи и мышечную выстилку, сопровождающую каналы гастро-васкулярной системы. У щупальцевых гребневиков имеются мышцы, вызывающие сокращение щупалец.
Нервная система представлена нервным сплетением (плексусом), расположенным под покровным эпителием. Наблюдается незначительная концентрация нервных клеток под меридианальными рядами гребных пластинок. Нервная система состоит из поверхностного эпителия и нервных клеток, которые находят рядами гребных пластинок, образуя плотные тяжи, идущие к аборальному полюсу, на котором находится аборальный орган, в его состав входят статоцист и подстилающее его скопление нервных клеток. Аборальный орган осуществляет регуляцию движения.
Половые железы, или гонады, расположены на стенках меридианальных каналов гастро-васкулярной системы. Гребневики — гермафродиты. Яичники и семенники расположены в каждом из меридианальных каналов вдоль их стенок, обращённых к поверхности тела. Зрелые гаметы попадают в гастро-васкулярную систему и выводятся наружу через рот. Оплодотворение и ранние этапы развития могут проходить в гастральной полости.
Дробление яиц у гребневиков полное, неравномерное, радиальное с преобладанием двулучевой симметрии. Первые три деления проходят в меридиональном направлении, в результате чего на стадии восьми бластомеров зародыш представляет собой удлиненную пластинку 2х4 бластомера, слегка вогнутую на месте будущего аборального полюса. Четвертое деление проходит в экваториальной плоскости. В результате его на аборальном полюсе обсобляются микромеры (будущая эктодерма) и на оральном — макромеры (будущие энто- и мезодерма).
Из яйца выходит планктонная цидиппоидная личинка, названная так по сходству со взрослыми гребневиками рода Cydippe.
61вопрос
Колониальные и полиэнергидные гипотезы происхождения многоклеточных животных
I. Колониальные гипотезы происхождения Metazoa базируются на признании в качестве предков колониальных Protozoa.
1. Первую колониальную гипотезу происхождения Metazoa разработал зоолог-эволюционист Э. Геккель (1874), гипотеза получила название «гастреи». Он считал, что протозойным предком Metazoa была «бластея» — шаровидная колония жгутиковых, похожая на стадию бластулы в развитии многих многоклеточных. В процессе эволюции от бластеи путем инвагинации (впячивания) могли возникнуть первые двуслойные многоклеточные с кишечной полостью, выстланной энтодермой. Этот гипотетический предок Metazoa был назван Э.Геккелем «гастреей» в связи со сходством со стадией гаструлы в развитии многоклеточных. Гастрея, по Геккелю, представляла плавающее двуслойное животное со ртом. Наружный слой жгутиковых клеток гастреи представлял эктодерму и выполнял двигательную функцию, а внутренний слой клеток (энтодерма) — пищеварительную.
Дальнейшее развитие теории «гастреи» продолжил О. Бючли (1884), предложивший ее новый вариант — гипотезу «плакулы». По правка Бючли к теоретическим рассуждениям Геккеля состояла в том, что он считал колониальных простейших типа «бластеи» эволюционно продвинутыми и предложил в качестве гипотетического колониального предка более простую пластинчатую колонию одноклеточных типа современных Gonium Путем расщепления такой пластинки на два слоя возник, по Бючли, гипотетический предок многоклеточных — «плакула». В дальнейшем из плакулы могла образоваться, по Бючли, гастрея путем чашевидного прогибания двуслойной пластинки. Натолкнуло Бючли на создание нового варианта гипотезы описание примитивного двуслойного многоклеточного животного — трихоплакса (Trichoplax), строение которого приближалось к плоским колониям жгутиковых. Автор предполагал, что подобные трихоплаксу животные могли быть промежуточными между «плакулой» и «гастреей». Тем более было обнаружено, что у Trichoplax нижний слой клеток способен к наружному пищеварению. Ползая, эти животные выделяют пищеварительные соки (ферменты), переваривающие бактериальную пленку. В дальнейшей эволюции, по его мнению, из этого нижнего слоя клеток примитивных плакулоподобных организмов возникла энтодерма гастреи, а из верхнего — эктодерма.
II. Полиэнергидные гипотезы происхождения многоклеточных исходят из того, что предками Metazoa были полиэнергидные простейшие.
Впервые идея происхождения Metazoa от полиэнергидных Protozoa была предложена Иерингом, а позднее активно защищалась юго- славским зоологом Иованом Хаджи (1963). По мнению Хаджи, предками Metazoa были инфузории, а первыми многоклеточными — плоские черви (планарии). При этом процесс образования многоклеточности происходил путем целлюляризации, т. е. в клетке одноклеточного вокруг ядер обособлялись клетки. Например, по Хаджи, из эктоплазмы инфузорий и ядер — производных макронуклеуса возникали покровные клетки (эктодерма), из эндоплазмы и ядер — производных микронуклеуса образовывалась внутренняя паренхима (энтодерма и мезодерма), а из различных органелл — органы первого многоклеточного организма.
По названию процесса, якобы приведшего к образованию многоклеточности, полиэнергидную гипотезу часто называют еще и целлюлярной.
Идея о происхождении Metazoa от полиэнергидных Protozoa через целлюляризацию несомненно заслуживает внимания, однако конкретная аргументация гипотезы Хаджи сомнительна. Автором допущена некоторая механистичность в объяснении происхождения от Protozoa довольно высокоорганизованных групп трехслойных животных — червей. В этой гипотезе также не учтены: постулаты клеточной теории, теории зародышевых пластов, биогенетический закон, гомологичность структур, особенности жизненных циклов предков и потомков.
Обзор гипотез показывает, что в настоящее время наиболее серьезно аргументирована гипотеза фагоцителлы И. И. Мечникова, доработанная А. В. Ивановым с учетом всех достижений в этой области.
62 вопрос
Общая характеристика членистоногих. Систематика типа.
Общая характеристика типа
Членистоногие —самый многочисленный (более I млн. видов) тип царства Животные, далекими предками которого были кольчатые черви. Представители типа заселили не только морские и пресные водоемы, но и наземную поверхность, почву и воздушную среду. К жизни в наземной среде приспособились членистоногие трех классов: Паукообразные, Насекомые и Многоножки. Они являются настоящими наземными животными, широко распространенными в самых различных климатических зонах.
Характерные черты организации членистоногих следующие:
1. Тело сегментировано и дифференцировано на три отдела: голову, на которой размещаются рот и органы чувств, грудь, выполняющую в основном двигательную функцию, и брюшко, заключающее большую часть внутренних органов. У некоторых групп членистоногих голова сливается с грудью.
2. Покровы тела —многослойная хитинизированная кутикула, выполняющая защитную функцию. У наземных членистоногих ее наружный слой содержит жиро- и воскоподобные вещества, препятствующие потере воды телом животного. Кутикула служит также наружным скелетом, к разным участкам которого прикрепляются пучки поперечнополосатых мышц, что обеспечивает движение различных частей тела и конечностей. Из-за нерастяжимости кутикулы рост членистоногих сопровождается периодической линькой.
3. Членистые конечности подвижно соединены с телом и представляют собой многочленные рычаги, способные к сложным движениям. Членики конечностей подвижны благодаря наличию суставов . Конечности обеспечивают разнообразные виды движений — ходьбу, бег, прыгание, плавание, а также выполняют ряд других функций — захват и измельчение пищи, дыхание, осязание и др.
4. Полость тела смешанная, т. е. зачатки целома и остатки первичной полости слиты друг с другом. Целом не выполняет опорной функции, так как развит наружный скелет.
5. Пищеварительная система имеет три отдела: передний, средний и задний. Передний и задний отделы эктодермального происхождения и изнутри выстланы хитинизированной кутикулой. Ротовые аппараты разных групп членистоногих разнообразны, что позволяет им питаться различными видами кормов. Хорошо развиты пищеварительные железы,ускоряющие процесс пищеварения.
6. Кровеносная система незамкнутая. Сердце представляет собой расположенную на спинной стороне тела трубку, разделенную перегородками на несколько камер, которые сокращаются последовательно друг за другом, перекачивая гемолимфу.
7. Органами дыхания являются жабры, а у наземных —легочные мешки и трахеи.
8. Органы выделения — видоизмененные метанефридии («зеленая» железа раков), у наземных —мальпигиевы сосуды — многочисленные замкнутые короткие эпителиальные трубочки, открывающиеся на границе между средней и задней кишкой. Продукты выделения из полостной жидкости (гемолимфы) попадают в мальпигиевы сосуды, а из них — в заднюю кишку.
9. Нервная система построена по типу брюшной нервной цепочки кольчатых червей. Ее отличительной чертой является уменьшение числа парных брюшных ганглиев вследствие их слияния друг с другом в связи с укорочением тела или малыми размерами животного. У общественных насекомых значительного развития достигают надглоточные ганглии — «мозг», который служит основой формирования сложных форм врожденного поведения . Хорошо развиты различные органы чувств: осязания, вкуса, обоняния, зрения, равновесия, слуха. 10. Членистоногие —раздельнополые животные, многим из них свойственен половой диморфизм. Оплодотворение внутреннее. Постэмбриональное развитие у некоторыхпрямое, у большинства — с неполным или полным метаморфозом. Некоторые насекомые приобрели способность на разных стадиях онтогенеза существовать в двух средах — водной и наземной.
Классификация I
Основана на гипотезе о полифилетическом происхождении членистоногих. В связи с этим, тип членистоногих здесь разбивается на три самостоятельных типа.
Тип Хелицеровые
Тип Ракообразные
Тип Трахейные
Подтип Онихофоры
Подтип Неполноусые
Классификация II
Основана на гипотезе о монофилетическом происхождении членистоногих. При этом тип членистоногих объединяется сонихофорами и тихоходками в группу Lobopoda.
Подтип Трилобитообразные (Trilobitomoгрha — парафилетический таксон)
Класс Трилобиты (Trilobita)
Подтип Хелицеровые (Chelicerata)
Класс Морские пауки (Pantopoda)
Класс Паукообразные (Arachnida) (пауки, клещи, скорпионы)
Класс Меростомовые (Merostomata) (мечехвосты)
Класс Эвриптериды (Gigantostraca) (гигантские морские скорпионы)
Подтип Жвалоносные (Mandibulata)
Надкласс Ракообразные (Crustacea)
Класс Ремипедии (Remipedia)
Класс Цефалокариды (Cephalocarida)
Класс Жаброногие (Branchiopoda)
Класс Ракушковые (Ostracoda)
Класс Мистакокариды (Mystacocarida)
Класс Максиллоподы (Maxillopoda)
Класс Карпоеды (Branchiura)
Класс Высшие раки (Malacostraca) (омары, креветки, крабы и др.)
Подтип Неполноусые (Atelocerata) илитрахейные
Надкласс Многоножки (Myriapoda)
Класс Симфилы (Symphyla)
Класс Губоногие (Chilopoda)
Класс Двупарноногие (Diplopoda)
Класс Пауроподы (Pauropoda)
Надкласс Насекомые (Insecta)
Класс Скрыточелюстные (Entognatha)
Класс Открыточелюстные (Ectognatha)