Основные методы генетики человека

Генеалогический метод

Этот метод относится к классическим методам генетики и активно используется в генетике человека. В его основе лежит изучение родословных или генеалогических семей. Центральное место здесь занимает исследование и анализ того, как распределяются аномальные признаки в семьях, которые отличаются наличием этого признака. К таким признакам можно отнести какой-либо талант, определенный внешний признак или заболевание, передающееся по наследству.Близнецовый метод

Не менее эффективный метод исследования — близнецовый. Он предполагает изучение однояйцевых близнецов, которые развиваются из одной яйцеклетки и характеризуются одинаковым генотипом.

У разнояйцевых близнецов генотип разный: разные сперматозоиды оплодотворяют разные яйцеклетки. По этой причине черты разнояйцевых близнецов менее схожи, чем черты однояйцевых.

С помощью этого метода можно проследить взаимодействия генотипа и условной среды обитания и их влияние на развитие человека. Также можно просчитать вероятность проявления признаков некоторых болезней, которые передаются по наследству.

Популяционно-статистический метод

Использование этого метода дает возможность изучать, с какой частотностью встречаются гены, которые определяют проявление определенных наследственных признаков и нормальных признаков.

С увеличением степени кровного родства происходит переход рецессивных признаков в гомозиготное состояние с последующим их проявлением в фенотипе.

Дерматоглифический метод

Он относится к специфическим методам генетики человека, так как основывается на изучении наследственно обусловленных рисунков, расположенных на кончиках пальцев, ладоней и подошв. Все эти рисунки являются уникальными и напрямую связаны с наследственностью.

Формируются эти рисунки во внутриутробный период развития человека. Не стоит связывать с генетикой хиромантию: генетика не гадает по линиям рук, а изучает особенности того, как проявляются унаследованные черты в различных условиях человеческой среды обитания и характера человеческой деятельности.

21 вопрос

Биология клетки. Клеточная теория, основные положения. Структурные компоненты клеток, строение, функции.

клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.

Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838—1839 г.). Рудольф Вирхов позднее (1858 г.) дополнил её важнейшим положением «всякая клетка происходит от другой клетки».

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Клеточная теория неоднократно дополнялась и редактировалась.

Клетка — это элементарная, структурно-функциональная единица всего живого. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных (встроенных) в системы тканей и органов, связанных друг с другом (кроме вирусов, которые не имеют клеточного строения).Дополнительные положения клеточной теории[править | править код]

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

· Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны (сопоставимы) друг другу.

· В основе деления клетки и размножения организмов лежит копирование наследственной информации — молекул нуклеиновых кислот ДНК[1] («каждая молекула из молекулы»). Положение о генетической непрерывности («каждая клетка из клетки»)[2] распространяется не только на клетку в целом, но и на некоторые из её более мелких компонентов — митохондрии, хлоропласты, гены и хромосомы.

· Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию — к дифференцировке.

Всякое болезненное изменение связано с каким-то патологическим процессом в клетках, составляющих организм.

Клетка-это элементарная живая система,состоящая из цитоплазмы,ядра,оболочки и являющаяся основой развития строения и жизнедеятельности животных и растительных организмов. Живому свойствен рад совокупных признаков: способность к в о с п р о и з в е д е н и ю (репродукции), и с п о л ь з ов а н и е и т р а н с ф о р м а ц и я э н е р г и и , м е т а б о л и з м , ч у в с т в и - т е л ь н о с т ь , а д а п т а ц и я , и з м е н ч и в о с т ь . Такую совокупность этих признаков впервые можно обнаружить только на клеточном уровне. Именно клетка как таковая является наименьшей единицей, обладающей всеми свойствами, отвечающими определению «живое».

Симпласты — это крупные образования, состоящие из цитоплазмы (протоплазмы) с множеством ядер.(мышечные волокна,наружный слой трофобласта плаценты);

Синцитии (соклетия) характеризуются тем, что после деления исходной клетки дочерние остаются связанными друг с другом с помощью тонких цитоплазматических перемычек.(развитие сперматогониев);

Межклеточное вещество, или матрикс соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное вещество как у зародышей, так и у взрослых образуется, с одной стороны, путем секреции, осуществляемой соединительнотканными клетками, а с другой — из плазмы крови, поступающей в межклеточные пространства. У зародышей человека образование межклеточного вещества происходит начиная с 1—2-го месяца внутриутробного развития. В течение жизни межклеточное вещество постоянно обновляется — резорбируется и восстанавливается.

кроме клеток многоклеточный организм построен из так называемых неклеточных структур, которые всегда являются вторичными относительно клеток, т.е. их производными. Среди неклеточных структур различают ядерные, содержащие ядра и возникают путем слияния клеток или вследствие незавершенного разделения их, и безъядерные - продукт деятельности определенных видов клеток. К ядерным неклеточных структур относятся симпласты и синцитий. К безъядерным неклеточным структурам относятся волокна и основное (аморфное) вещество соединительной ткани, продуцируемых одним из типов клеток - фибробластами. Аналогами основного вещества есть такие жидкие среды, как плазма крови и жидкая часть лимфы. Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Ядро:

Ядро состоит из ядерной оболочки,ядерного белкового матрикса,ядрышка и хроматина.

Оболочка ядра двумембранная состоит из наружной и внутренней ядерной мембраны,ядерной пластинки и ядерных пор.Наружная и внутренняя мембрана разделены пронуклеарным пространством и соединяются только в области ядерных пор.Наружная мембрана имеет рибосомы и переходит в мембрану гранулярной ЭПС.Внутренняя мембрана отделена от содержимого ядра ядерной пластинкой,которая содержит белки промежуточных филаментов-ламины.Содержимое ядра сообщается с цитоплазмой через 3-4 тыс.специализированных коммуникаций-ядерных пор.Поры образованы белками порового комплекса.Ядерные поры осуществляют регулируемый транспорт веществ в ядро и из ядра.

Матрикс представляет собой коплоидный раствор разнообразных ферментов.В матриксе расположены ядрышко и хроматин,

Ядрышко- резко базофильная структура.Имеет диффузную структуру.В нём выделяют хромофобную зону,содержащую ДНК ядрышкового организатора(информация о рРНК),гранулярный компонент,состоящий из рибосомных субъединиц и фибрилярных компонент,образованные рибонуклеиновыми фибриллами(РНК-транскрипты).

Функции ядрышка:синтез рРНК и сборка субъединиц рибосом.Размер ядрышка больше в клетках с интенсивным метаболизмом.

Хроматин занимает основную часть объема ядра.Он представлен тёмными(электронно-плотными) глыбками-гетерохроматином и светлыми(электронно-прозрачными)областями-эухроматином.

Клетки могут иметь самую разнообразную внешнюю форму: шаровидную (лейкоциты), многогранную (клетки железистого эпителия), звездчатую и разветвленно-отростчатую (нервные и костные клетки), веретеновидную (гладкие мышечные клетки, фибробласты), призматическую (кишечный эпителиоцит), уплощенную (эндотелиоцит, мезотелиоцит) и др.

22вопрос

Популяционная генетика. Факторы эволюции.

Генетика популяций

Популяционная генетика - это раздел генетики, изучающий закономерности наследования признаков на уровне групп (популяций, пород, семейств и т.д.) и их изменчивость в пространстве и во времени.

Для улучшения племенных и продуктивных качеств животных необходимо знать генотипы не только отдельных индивидуумов, но и генетическую структуру всего стада или даже породы в целом. Важное значение для селекции имеют знания закономерностей наследственности и изменчивости в отсутствие и с учетом искусственного отбора и подбора животных, факторов, их определяющих. Исследования генетических процессов, протекающих в естественных условиях размножения животных, имеют большое значение для дальнейшего познания эволюции с целью управления этими процессами при разведении сельскохозяйственных животных.

По Н. В. Тимофееву-Ресовскому, популяция — это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющая определенное пространство, состоящая из особей, могущих свободно скрещиваться друг с другом, и отделенная от таких же соседних совокупностей одной из форм изоляции (пространственной, сезонной, физиологической, генетической). Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища.

В животноводстве под популяцией понимают группу животных одного вида, характеризующихся определенной численностью и ареалом распространения. Такая группа отличается от других популяций генетической структурой, экстерьерными, интерьерными и продуктивными качествами. Популяцией в животноводстве может быть отдельное стадо животных, порода или отродье, в рыбоводстве – стадо, раса, порода, внутрипородный тип. Обычно популяция — замкнутая группа.

Каждая популяция характеризуется определенным генофондом, т. е. совокупностью аллелей, входящих в ее состав.

Наряду с популяцией в генетике существует понятие «чистая линия» — это потомство, полученное только от одного родителя и имеющее с ним полное сходство по генотипу. Чистые линии могут быть созданы в растениеводстве у самоопыляющихся растений и у некоторых видов рыб при использовании индуцированного гиногенеза. В отличие от популяций они характеризуются полной гомозиготностью. Вследствие полной гомозиготности отбор в чистой линии невозможен, так как все особи, входящие в нее, имеют идентичный набор генов. Чистые линии наиболее характерны для микроорганизмов при биотехнологии производства вакцин, сывороток или клонировании животных.

Популяция состоит из животных разных генотипов. Эффективность отбора в ней зависит от степени генетической изменчивости — соотношения доминантных и рецессивных генов.

Основные факторы генетической эволюции в популяциях.

В популяциях сельскохозяйственных животных постоянно изменяются частоты генов, что можно наблюдать при анализе смежных поколений. Такие изменения составляют суть генетической эволюции. Основные факторы эволюции: мутации, естественный и искусственный отбор, миграции, дрейф генов.

Одна из основных причин генетической изменчивости в популяции — мутации. Спонтанные мутации каждого гена происходят с низкой частотой, однако общая частота мутаций всех генов, которые содержат популяции, очень велика. Мутации, возникающие в половых клетках родительского поколения, приводят к изменению генетической структуры у потомства. В популяции постоянной численности в отсутствие отбора большинство возникших мутаций быстро утрачивается, однако некоторые из них могут сохраниться в ряде поколений. Исчезновению мутантных генов из популяции противостоит действие мутационного процесса, в результате которого образуются повторные мутации.

Генетическая структура популяций формируется и изменяется под действием естественного и искусственного отбора. Действие естественного отбора состоит в том, что преимущественное размножение имеют особи с высокой жизнепособностью, скороспелостью, плодовитостью и т. д., т. е. более приспособленные к условиям окружающей среды. При искусственном отборе определяющее значение имеют признаки продуктивности.

23вопрос

Ткани человеческого организма. Особенности организации и классификации тканей

Ткани - это исторически сложившаяся структура клеток и межклеточного вещества, объединенных между собой общностью происхождения, строения и выполняемым функциям.

Виды тканей :

1. Эпителиальная

2. Соединительная

3. Мышечная

4. Нервная

Эпителиальная ткань – определение, строение, функции, классификация.

Эпителий - это пограничная ткань, которая отделяет внутреннюю среду от внешней. Составляет кожный покров и все оболочки внутренних органов, желез и выводных протоков.

Функции:

1. Защитная.

2. Секреторная.

3. Обменная.

По отношению клеток эпителия к базальной мембране, на которой лежат эти клетки - различают однослойный и многослойный эпителий.

По расположению ядер однослойный эпителий может быть однорядный и многорядный. Многорядный выстилает мочевыводящие пути, трахею, дыхательные пути, входит в состав слизистой оболочки обонятельных полостей.

По форме однослойный эпителий может быть:

1. Плоский - клетки тонкие, уплотненные, мало цитоплазмы, ядро в центре, край его неровный. Выстилает брюшину, плевру, эпикард с перикардом, стенки капилляров, сосудов, влагалищная оболочка яичка. Иначе его называют мезотелий

2. Кубический - выстилает почечные канальца, протоки желез.