Провода одножильные и многожильные
План урока 77-78
ПМ 01. ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОДВИЖНОГО СОСТАВА
Тема 1.6 Электрическое оборудование ТПС
Тема Урока : Назначение и виды материалов и изоляторов.
Урок – Комбинированный
Цель: Ознакомить обучающихся с изоляционными свойствами материалов
1. Обучающая:
Рассказать и объяснить изоляционные свойства материалов
Развивающая:
Выработка умений самостоятельно применять знания в различных ситуациях при ведении поезда; развитие самостоятельности в области технологии локомотивного хозяйства.
Воспитательная:
Способствовать творческому отношению к учебе; воспитание дисциплинированности; воспитание эстетических взглядов.
Структура учебного занятия:
1.Изучение нового материала
Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.
Конструкция и размеры изоляторов определяются прикладываемыми к ним механическими нагрузками, электрическим напряжением установок и условиями их эксплуатации. Все электрические изоляторы классифицируются по таким принципам: 1. По назначению: Опорные изоляторы Опорные изоляторы внутренней установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах. Шинные изоляторы типа “бочонок” применяются для крепления токопроводящих шин внутри силовых шкафов или других устройств, для неподвижной фиксации и изоляции частей, находящихся под напряжением, от корпуса и панелей сборки с последующим подключением силовых проводников для распределения электроэнергии внутри щита. Крепление шинного изолятора осуществляется с помощью болта. Изоляторы опорно-стержневые наружной установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах электрических станций и подстанций переменного тока напряжением 10 – 35 кВ частотой до 100 Гц при температуре окружающего воздуха от – 600С до + 50оС в районах 1-4 степени загрязнения, например на объектах РЖД. Проходные изоляторы Изоляторы проходные внутренней установки предназначены для устройства переходов токоведущих линий сквозь стены либо для ввода электрических проводов внутрь блоков различной аппаратуры, для изоляции и соединения токоведущих частей закрытых распределительных устройств с открытыми распределительными устройствами. Изоляторы проходные тупиковые внутренней установки – частный случай проходного изолятора. Конструктивно тупиковые изоляторы похожи на проходные, но вместо сквозных отверстий в них предусматривается глухая стенка с торцевыми креплениями для закрепления проводников. Изоляторы проходные тупиковые применяются в крайних ячейках секции КРУ для фиксации сборных шин. Изоляторы проходные для установки на открытом воздухе – штыревые, стержневые, тарельчатые. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения. Проходные изоляторы внешней установки предназначены для изоляции от токоведущих частей закрытых распределительных устройств. Тяговые изоляторы Тяговые изоляторы или тяги изолирующие используются в электрических аппаратах для передачи движения от одних частей к другим, которые находятся под разными потенциалами. Изоляторы тяговые применются в разъединителях и выключателях нагрузки напряжением. 2. По материалу изготовления: Стеклянные изоляторы. Производятся из особого закаленного стекла. В отличие от фарфоровых изоляторов, они обладают высокой механической прочностью, меньшими весом и габаритными размерами, большим сроком эксплуатации; Фарфоровые изоляторы. Изготавливаются из электротехнического фарфора, поверх которого наносится слой глазури. После этого изделия обжигают в печах; Полимерные изоляторы. Для производства используются особые пластические массы. Данные изделия предназначаются для изоляции и механического крепления токоведущих частей в электрических устройствах, а также для монтажа токоведущих шин распределительных механизмов электростанций. Стеклянные и фарфоровые изоляторы во многом уступают полимерным изоляторам, которые более устойчивые к загрязнениям, температурным воздействиям и актам вандализма.
План урока 79-80
ПМ 01. ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОДВИЖНОГО СОСТАВА
Тема 1.6 Электрическое оборудование ТПС
Тема Урока : Расчёт сечения провода по токовой нагрузке
Урок – Комбинированный
Цель: Ознакомить обучающихся с Расчётом сечения провода по токовой нагрузке
2. Обучающая:
Рассказать и объяснить Расчёт сечения провода по токовой нагрузке
Развивающая:
Выработка умений самостоятельно применять знания в различных ситуациях при ведении поезда; развитие самостоятельности в области технологии локомотивного хозяйства.
Воспитательная:
Способствовать творческому отношению к учебе; воспитание дисциплинированности; воспитание эстетических взглядов.
Структура учебного занятия:
1.Изучение нового материала
А для чего вообще необходимо рассчитывать сечение проводов? Нельзя ли ограничиться подбором «на глаз»?
Нет, нельзя, так как совсем несложно впасть в две крайности:
· Проводник недостаточного сечения начинает сильно перегреваться. Это ведет к оплавлению изоляции проводки, созданию условий для самовозгорания, для коротких замыканий. Все это становится причиной разрушительных пожаров, часто сопровождающихся человеческими трагедиями.
· Проводники избыточного диаметра, безусловно, такими опасностями не грозят. Но зато они и существенно дороже (особенно если разговор идет о медных кабелях), и не столь удобны в работе. Получаются совершенно неоправданные материальные и трудовые затраты.
Так что руководствоваться следует принципом разумной достаточности. Тем более что произвести необходимые вычисления – по силам каждому, кто хоть немного разбирается в азах математики и физики.
Для начала вспомним некоторые понятия, многим, наверное, и без того хорошо известные. Но просто для того, чтобы в дальнейшем изложении не появилось разночтений.
Провода одножильные и многожильные
С этим вопросом часто бывает путаница, в том числе в статьях, опубликованных на интернет-сайтах.
Итак, в качестве проводника в проводах и кабелях может использоваться одна проволока — с точки зрения электрической проводимости — это оптимальный вариант.
Но для достижения гибкости кабельной продукции приходится использовать более сложные конструкции – множество тонких проволочек, обычно скрученных при этом в «косичку». Чем больше таких проволочек – тем более гибким получается проводник.
Однако, это не следует путать с многожильностью провода. Под отдельной жилой подразумевается именно отдельный проводник. Чтобы стало понятнее – смотрим на иллюстрацию.
На картинке ниже – примеры одножильного провода. Просто с левой стороны – жесткий однопроволочный, а с правой – более гибкий многопроволочный вариант.
И слева, и справа — это одножильный провод.
Если провод (кабель) конструктивно совмещает два изолированных друг от друга проводника или больше, он становится двухжильным, трехжильным и т.п. Но он также может оставаться одно- или многопроволочным.
Двухжильный многопроволочный провод
Аналогичная ситуация и с кабелями. По определению, кабель – это конструкция из нескольких изолированных друг от друга проводников, заключенных в общую изолирующую и защитную оболочку. А вот проводники также могут быть одно- или многопроволочными.
Трехжильные силовые кабели – с однопроволочными или многопроволочными жилами
Жесткие однопроволочные изделия хороши для неподвижных участков проводки, например, вмуровываемых в стены. Многопроволочные провода и кабели отлично подходят для тех участков, где бывает нужна подвижность — типичным примером являются шнуры питания бытовой техники и осветительных приборов.
Итак, все последующие расчеты будут вестись для сечения жилы провода или кабеля.
При оценке условий расположения проводов в дальнейшем могут быть варианты, когда придется представлять разницу, например, между тремя одножильными проводами, протянутыми в одной трубе, или одним трехжильным кабелем.
Диаметр и площадь поперечного сечения провода
Два взаимосвязанных параметра, которые порой по неопытности путают. Смотрим на схему – по ней все станет понятно.
Слева – диаметр проводника (жилы), измеряется в миллиметрах. Справа – площадь поперечного сечения проводника, измеряется в мм².
Во всех справочника обычно используется параметр сечения, так как именно по этому критерию производится классификация различных марок проводов и кабелей.
Но это хорошо, если известна марка кабеля (провода). Если нет, то сечение остается подсчитать, опираясь на диаметр, который можно измерить штангенциркулем или микрометром.
Диаметр жилы (проволоки) поддается обычному измерению. Площадь сечения – только расчёту.
Формулу площади круга должны, наверное, помнить все. Но тем не менее – приведем ее на всякий случай.
Sc = π × d² / 4 ≈ 3.14 × d² / 4 ≈ 0.785 × d²
Знак «примерно равно» применен только потому, что взято округление числа π до сотых, всем известное значение π ≈ 3,14. Но в нашем случае такой точности – более чем достаточно!
Это формула сечения однопроволочного проводника. А если нужно найти сечение неизвестного провода, с многопроволочной жилой?
Тоже ничего сложного. Жила распушается, чтобы появилась возможность подсчитать количество проволочек в «косичке». И останется только микрометром или штангенциркулем промерить диаметр одной проволочки.
Sc = n × π × d² / 4 ≈ n × 3.14 × d² / 4 ≈ 0.785 × n × d²
где n – это количество проволочек в одной жиле.