Отношение Р называется отношением эквивалентности, если Р рефлексивно, симметрично и транзитивно. Обозначается Е и ~ (тильда).
Пусть Е – эквивалентность на множестве А. Классом эквивалентности элемента называется множество E(x)={y | xEy}. Классы эквивалентности Е также называют Е-классами. Множество
называется фактор-множеством множества А по отношению к Е.
Утверждение: Множество всех классов эквивалентности образует разбиение множества А (система непересекающихся подмножеств, объединение которых совпадает с А). Если {Ai} – некоторое разбиение множества А, то по этому разбиению можно однозначно определить эквивалентность. Т.е. xEy тогда и только тогда, когда x, y принадлежат Аi для некоторого i.
Доказательство:
Пусть Е – отношение эквивалентности на множестве А, А/Е – фактор-множество множества А по Е. Т.к. в силу рефлексивности Е выполнимо для любого
, то каждое множество из А/Е непустое и
. Чтобы установить, что А/Е – разбиение множества А, покажем, что если
, то E(x)=E(y).
Пусть и
, т.е.
. Т.к. Е симметрично, то
. Из транзитивности Е следует
, т.е.
. Таким образом,
. Обратное включение доказывается аналогично.
Предположим, что Е – отношение на множестве А, соответствующее разбиению R={Ai}. Рефлексивность и симметричность Е очевидны. Пусть выполняется xEy и yEz. Тогда , где
. Поскольку
и
, то Аi=Aj. Следовательно Е транзитивно. Е – эквивалентность.
Матрица отношения эквивалентности имеет блочно-диагональный вид. Или приводится к нему путем одновременных перестановок строк и столбцов.
9. Отношения порядка. Максимальные и минимальные, наибольший и наименьший элементы частично упорядоченного множества. Диаграммы Хассе. Линейно и вполне упорядоченные множества.
Отношение называется предпорядком или квазипорядком, если Р рефлексивно и транзитивно.
Отношение называется частичным порядком, если Р рефлексивно, транзитивно и антисимметрично. Т.е. частичный порядок – это антисимметричный предпорядок.
Множество, с заданным на нём частичным порядком называется частично упорядоченным множеством (ЧУМ)
Пусть <A,≤> - ЧУМ. Тогда элемент называется наибольшим, если
. Элемент
называется наименьшим, если
. Элемент
называется максимальным, если для него нет большего, т.е.
, если
, то
. Элемент
называется минимальным, если для него нет меньшего, т.е.
, если
, то
.
Наименьший элемент всегда минимален (наибольший – максимален). Обратное неверно.
Наибольший элемент часто называют единицей. Наименьший – нулем.
Диаграммы Хассе:
Рассмотрим ЧУМ <A,≤>. Говорят, что элемент y покрывает элемент x, если x≤y и x≠y не существует такого элемента z, что x<z<y. Если множество А конечно, то частично упорядоченное множество <A,≤> можно представить в виде схемы, в которой каждый элемент изображается точкой на плоскости, и если y покрывает х, то точки х и y соединяются отрезком, причем точку х располагают ниже y. Такие схемы называются диаграммами Хассе.