1 метод. По определению логарифма.

Так решаются простейшие уравнения вида .

Решить уравнение :

Как вы предлагаете его решать? (По определению логарифма).Решение. , Отсюда 2х – 4 = 4; х = 4.

Ответ: 4.

В этом задании 2х – 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать. Условие 2х – 4 > 0 в этом задании выписывать не надо.

2 метод. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим пример :

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны). Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение 1. ОДЗ:

Потенцируем исходное уравнение , получим уравнение 2x + 3 = х + 1.

Решаем его: х = -2. Это решение не подходит ОДЗ, значит, данное уравнение корней не имеет.

Можно решить это уравнение иначе – переходом к равносильной системе:

Уравнение

(Система содержит избыточное условие – одно из неравенств можно не рассматривать).

Решение 2. Уравнение равносильно системе:

Эта система решений не имеет.

 

Есть еще один вариант решения – переход к следствию из данного уравнения. При неравносильных преобразованиях найденное решение необходимо проверить подстановкой в исходное уравнение.

 

Решение 3. .

Сделаем проверку: неверно, так как не имеет смысла.

Ответ: корней нет.

 

Вопрос Какое из этих трех решений вам больше всего понравилось? Вы имеете право решать любым способом.

3. Введение новой переменной.

Рассмотрим пример. .

Что вы заметили? (Это квадратное уравнение относительно log3x).

Ваши предложения? (Ввести новую переменную)

Решение. ОДЗ: х > 0.

Пусть , тогда уравнение примет вид: . Дискриминант D > 0. Корни по теореме Виета: .

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

; . Ответ: 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение: .

Решение: ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

Применим свойство логарифма степени:

(lgx + 3) lgx =

(lgx + 3) lgx = 4

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4, ; lgx = 1, .

Ответ: 0,0001; 10.

5. Приведение к одному основанию.

Решите уравнение:

Решение: ОДЗ: х>0. Перейдем к основанию 3.

или ; .

Ответ: 9. 6. Функционально-графический метод. Решить графически уравнение: = 3 – x.

Как вы предлагаете решать?

(Строить по точкам графики двух функций у = log2x и y = 3 – x и искать абсциссу точек пересечения графиков).

Есть способ, позволяющий не строить графики. Он заключается в следующем: если одна из функций у = f(x) возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х. Если корень имеется, то его можно угадать. В нашем случае функция возрастает при х>0, а функция y = 3 – x убывает при всех значениях х, в том числе и при х>0, значит, уравнение имеет не более одного корня. Заметим, что при х = 2 уравнение обращается в верное равенство, так как . Ответ: 2.

6. Первичное закрепление. «Правильному применению методов можно научиться,
только применяя их на различных примерах».
(Датский историк математики Г. Г. Цейтен)

Предложите метод решения уравнений: 1) 2)

3) 4) 5)

6)

7. Информация о домашнем задании. Выуч. П. 19

№337(2), №338(2), №339(2), №340(2), №341(2).

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого.