В рассматриваемый период возникновения жизни, длившийся примерно 1000 млн. лет, ультрафиолет был, вероятно, основным источником энергии для синтеза органических веществ.
Опарин А.И.
Из водорода, азота и соединений углерода при наличии свободной энергии на Земле должны были возникать сначала простые молекулы (аммиак, метан и подобные простые соединения).
В дальнейшем эти несложные молекулы в первичном океане могли вступать в реакции между собой и с другими веществами, образуя новые соединения.
В 1953 году американский исследователь Стенли Миллер в ряде экспериментов моделировал условия, существовавшие на Земле приблизительно 4 млрд. лет назад.
Пропуская электрические разряды через смесь аммиака, метана, водорода и паров воды, он получил ряд аминокислот, альдегидов, молочную, уксусную и другие органические кислоты. Американский биохимик Сирил Поннаперума добился образования нуклеотидов и АТФ. В ходе таких и аналогичных им реакций воды первичного океана могли насыщаться различными веществами, образуя так называемый «первичный бульон».
Второй этап состоял в дальнейших превращениях органических веществ и образовании абиогенным путем более сложных органических соединений, в том числе и биологических полимеров.
Американский химик С. Фокс составлял смеси аминокислот, подвергал их нагреванию и получал протеиподобные вещества. На первобытной земле синтез белка мог проходить на поверхности земной коры. В небольших углублениях в застывающей лаве возникали водоемы, содержащие растворенные в воде малые молекулы, в том числе и аминокислоты.
Когда вода испарялась или выплескивалась на горячие камни, аминокислоты вступали в реакцию, образуя протеноиды. Затем дожди смывали протеноиды в воду. Если некоторые из этих протеноидов обладали каталитической активностью, то мог начаться синтез полимеров, т. е. белковоподобных молекул.
Третий этап характеризовался выделением в первичном «питательном бульоне» особых коацерватных капель, представляющих собой группы полимерных соединений. Было показано в ряде опытов, что образование коацерватных суспензий, или микросфер, типично для многих биологических полимеров в растворе.
Коацерватные капли обладают некоторыми свойствами, характерными и для живой протоплазмы, как, например, избирательно адсорбировать вещества из окружающего раствора и за счет этого «расти», увеличивать свои размеры.