Моноклональные антитела

 

Моноклональные антитела разработаны на основе соматической гибридомной технологии. Такие АТ моноспецифичны, направлены к одному эпитопу АГ.

Для их получения мышей иммунизируют изучаемым антигеном (в клеточной или растворимой форме). Из селезенки иммунизированных животных получают суспензию клеток, среди которых есть антителообразующие. Затем проводят слияние этих антителообразующих В-клеток, срок жизни которых невелик, с В-клетками мышиной опухоли – плазмоцитомы (делятся непрерывно, «бессмертные» клетки). Сама плазмоцитома к синтезу АТ не способна. Слияние геномов этих клеток под одной клеточной мембраной (с помощью полиэтиленгликоля) приводит к появлению гибридных клеток. Они приобретают способность к синтезу специфических антител (от иммунных В-лимфоцитов) и становятся долгоживущими, непрерывно делящимися (как плазмоцитома). Чтобы их выявить, взвесь клеток культивируют в специальной среде, в которой не растут обычные негибридные клетки.

Из выращенной смеси гибридных клеток выделяют по 1 клетке и помещают в одну лунку с жидкой питательной средой и размножают (клонируют). После роста клонов в их надосадочной жидкости ищут антитела к изучаемому антигену. После их обнаружения, в одной из лунок, соответствующий клон отбирают и размножают. Накопившийся клон клеток продуцирует моноклональные АТ специфичные к единственному эпитопу изучаемого антигена.

Моноклональные АТ оказались исключительно удобным диагностическим средством. С их помощью выявляют антигены бактерии и вирусов, маркеры клеточных популяций, гормоны, медиаторы и т.д.

В настоящее время их все шире используют для лечения (пример – препарат инфликсимаб – моноклональные АТ, блокирующие действие ФНО a и тем самым подавляющие местное и системное воспаление).

 

Т-лимфоциты

 

 

После поступления в тимус (вилочковую железу) происходит антигеннезависимая дифференцировка Т-клеток под влиянием гормонов тимуса (a- и b-тимозины, тимулин, тимопоэтин). Здесь Т-лимфоциты дифференцируются в иммунокомпетентные клетки и приобретают способность к распознаванию антигена.

Основные молекулы-маркеры, присутствующие на поверхности Т-лимфоцитов: CD2 (один эпитоп-рецептор к эритроцитам барана), СD3, СD4 (у Т-хелперов), СD8 (у Т-цитотоксических (Тц)).

В норме у человека Т-лимфоциты составляют 60% (50-75%) всех лимфоцитов крови.

Т-лимфоциты неоднородны по функциям. Различают следующие основные их субпопуляции: Т0 (нулевые, тимические, «наивные», незрелые), Т-хелперы, Т-супрессоры и Т-клетки памяти (см. рис. 1.1).

Т-хелперы (Тх) стимулируют пролиферацию и дифференцировку Т- и В-лимфоцитов, выделяя интерлейкины. На поверхности Т-хелперов имеются те же маркеры, что и на остальных Т-лимфоцитах (СD2, СD3), а также свойственная им СD4-молекула адгезии, которая участвует как вспомогательная при взаимодействии с антигеном Т-клеточного рецептора (см. ниже), служит рецептором к ВИЧ-вирусу и к молекулам главного комплекса гистосовместимости II класса (МНС-II) других клеток. В норме у человека Тx составляют 34-45% лимфоцитов крови. Среди них различают Тx первого типа (Тx1) , выделяющие ИЛ-2, g-интерферон и другие, и в итоге обеспечивающие реакции Т-клеточного иммунитета; Тx второго типа (Тx2), секретирующие ИЛ-4, ИЛ-5, ИЛ-10, ИЛ-13 и стимулирующие синтез антител.

Тх 3-регуляторная субпопуляция (фенотип CD4+ CD25+) при активации синтезирует ИЛ-10 и TGFb (трансформирующий фактор роста b). Синтез этих цитокинов и продукта гена Foxр4+ – белка скурфина ассоциирован с супрессией иммунного ответа.

Т-цитотоксическими называют те Т-лимфоциты (18-22% в крови), которые несут антиген СD8 и рецептор к IgG (Fcg). Макромолекула CD8 служит рецептором для антигенов главного комплекса гистосовместимости I класса (МНС-I). После активации антигеном Т-супрессоры/цитотоксические клетки – Т-киллеры связываются с ним на поверхности клеток и, выделяя цитотоксин (белок перфорин), разрушают их. При этом Т-киллер остается жизнеспособным и может разрушать следующую клетку.

 

 

Т-клеточный рецептор

 

На поверхности Т-лимфоцитов имеется около 3х104 прочно связанных с мембранами Т-клеточных рецепторов (ТКР) к антигену, чем-то напоминающих антитела. Т-клеточный рецептор является гетеродимером и состоит из альфа- и бета- (молекулярная масса 40-50 кDа) и, реже, из g/d-цепей (1-5%-клеток в крови).

У Тх и Тц ТКР одинаковы по строению. Однако Т-хелперы взаимодействуют с антигеном, ассоциированным с HLA-молекулами II класса, а Т-цитотоксические распознают антиген в комплексе с HLA-молекулами I класса. Причем белковый антиген должен быть переварен антигенпредставляющими клетками и представлен в виде пептида длиной 8-11 аминокислот для Т-цитотоксических и 12-25 для Т-хелперов. Такое различие в связывании Тх и Тс пептидов обусловлено участием во взаимодействии молекул – CD4 у Тх и CD8 у Тц.

 

ГЛАВА 2. АНТИГЕНЫ.

ДИНАМИКА ИММУННОГО ОТВЕТА

 

Антигены

 

Антигены (АГ) это любые простые или сложные вещества, которые при попадании внутрь организма тем или иным путем, вызывают иммунную реакцию, и способны специфично взаимодействовать с продуктами этой реакции: антителами и иммунными Т-клетками.

Иммунизация – введение антигенов в организм с целью создания искусственного активного иммунитета или для получения препаратов антител.

 

Различают:

- ксеногенные (гетерологичные) антигены – межвидовые антигены, например – биомолекулы животных при их введении человеку, наиболее сильные антигены;

- аллогенные антигены или изоантигены, внутривидовые, отличающие людей (и животных) друг от друга;

- аутоантигены – собственные молекулы организма, на которые из-за нарушения аутотолерантности развивается иммунная реакция.

 

Основными свойствами антигенов являются иммуногенность и специфичность. Под иммуногенностью понимают способность антигена индуцировать в организме иммунную реакцию. Специфичность определяется взаимодействием антигена только с комплементарными ему антителами или рецепторами Т-лимфоцитов определенного клона.

Полноценными антигенами являются природные или синтетические биополимеры, чаще всего белки и полисахариды, а также комплексные соединения (гликопротеиды, липопротеиды, нуклеопротеиды).

 

Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунную реакцию. Однако при связывании с высокомолекулярными молекулами-«носителями» они приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны запускать иммунный ответ после связывания с белками организма, например с альбумином, а также с белками на поверхности клеток (эритроцитов, лейкоцитов).

 

Суперантигены – особая группа антигенов, которые в дозах значительно меньших, чем митогены, вызывают неспецифическую поликлональную активацию и пролиферацию большого числа Т-лимфоцитов (до 20%, обычные антигены – 0,01%). Эти антигены так же, как и обычные, распознаются Т-хелперами в ассоциации с антигенами гистосовместимости II класса или Т-супрессорами с молекулами I класса. Однако они высокотропны к b-цепям некоторых типов Т-клеточных рецепторов и стимулируют все Т-клетки, несущие их, независимо от антигенной специфичности. При этом в большом количестве вырабатываются провоспалительные цитокины, вызывающих воспаление и повреждение тканей. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины и другие бактериальные антигены, некоторые вирусы (ротавирусы). После активации наступает апоптоз – гибель Т-лимфоцитов и возникает их дефицит.

В-клеточные суперантигены связываются с Fab-фрагментами различных иммуноглобулинов (VL и VH цепями), могут активировать В-лимфоциты. Белок А стафилококков наряду со взаимодействием с Fc-фрагментами IgG, связывается с 15-50% IgM, IgA, IgG и IgE через Fab фрагмент. Белок L пептострептококка связывается с VL порцией иммуноглобулинов.