Механічні та фізичні властивості

Основні фізичні і механічні властивості найпоширеніших металів приведені в таблиці.

Метали Густина,ρ, кг/м3 Температура плавлення, °C Температура кипіння, °C Границя міцності, σв, МПа Відносне видовження,δ, % Твердість,HB Лінійний коефіцієнт теплового розширення, α, при 20 °C (10−6/°C)
Залізо 7860 1539 2380 300 21...55 50...70 11,5
Алюміній 2700 660 2500 80...110 40 20...30 23,1
Мідь 8930 1083 2600 220 60 35 16,5
Магній 1740 651 1103 170...200 10...12 25...30 25,7
Нікель 8900 1455 3080 400...500 40 60 13,9
Титан 4500 1665 3260 300...550 20...30 100 1,2
Молібден 10200 2620 4800 800...1200 46 150...160 5,8...6,2

Усі метали (за винятком ртуті) при звичайних умовах є кристалічними речовинами. Їхні атоми розташовані в певному геометричному порядку і утворюють просторовукристалічну ґратку. У вузлах кристалічної ґратки містяться іони металів. Валентні електрони дуже слабо зв'язані з атомами і можуть легко переміщатися по всьому об'єму металу, переходячи від одних іонів до інших.

Легкою рухливістю валентних електронів пояснюється висока електропровідність і теплопровідність металів. На відміну від розчинів і розплавів при проходженні електричного струму через металічний провідник переносу частинок речовини не відбувається. Метали мають електронну електропровідність. За електропровідністю і теплопровідністю метали розміщуються в однаковому порядку. Найкращими провідниками електричного струму є срібло, мідь, золото і алюміній.

Характерна особливість металів — металічний блиск, тобто здатність добре відбивати світло. Але ця здатність проявляється лише тоді, коли метал утворює суцільну і гладку (поліровану) поверхню.

Дуже важливою властивістю більшості металів є пластичність, тобто здатність змінювати зовнішню форму при дії сторонньої сили і зберігати набуту форму після припинення впливу зовнішньої дії. На цій здатності базуються різні способи механічної обробки металів: прокатка, кування, штамповка, волочіння тощо. Однак ця властивість у різних металів виявляється не однаково. Здатність розкатуватись у тоненькі листи і витягуватись у тоненький дріт найкраще виявляється у золота, срібла, міді, алюмінію і олова, трохи гірше в заліза і цинку. Деякі метали зовсім не виявляють пластичності, вони дуже крихкі — це бісмут, манган і особливо стибій (сурма). При ударі вони розпадаються на шматочки.

За густиною метали умовно поділяють на легкі (густина яких менша 5 г/см3) і важкі (густина яких більша 5 г/см3). До найлегших металів належать літій, калій і натрій. Легкі метали — манган, алюміній і титан. Найважчими вважаються ртуть, золото, платина і осмій.

За твердістю метали теж дуже відрізняються один від одного. Найтвердішим металом є хром, який дряпає скло. За ним іде вольфрам, нікель і ін. До найм'якших металів належать калій і натрій, які легко ріжуться ножем. Дуже м'яким є також свинець. (Див. таблиця густин речовин; таблиця відносної твердості речовин)

За температурами плавлення метали теж різко відрізняються один від одного. Найнижчу температуру плавлення має ртуть (—39°С), за нею йде цезій (28,5 °C), рубідій(38,5 °C), калій (62,3 °C), а найвищу — вольфрам (3410 °C). (Див. таблиця температур плавлення речовин)

За забарвленням метали умовно поділяють на чорні — залізо, манган та їх чисельні сплави (чавун, сталь) і кольорові, до яких відносять усі інші метали. Відповідно до цього і промисловість, яка їх добуває, називають чорною і кольоровою металургією.

Хімічні властивості

Характерною особливістю металів є здатність їх атомів віддавати свої валентні електрони і утворювати позитивно заряджені іони. На відміну від неметалів метали негативно заряджених іонів не утворюють. Отже, вільні метали є відновниками. Чим легше даний метал віддає свої валентні електрони, тим він активніший відновник. За хімічною активністю метали можна розподілити на три групи: сильно активні — калій, натрій, барій, кальцій і ін., середньої активності — цинк, залізо, нікель тощо і мало активні — срібло, золото і платина. Відносну активність металів можна визначити за положенням елемента в періодичній системі Д. І. Менделєєва: металічний характер елементів і хімічна активність металів посилюється в періодах справа наліво, а в головних підгрупах - згори донизу. Типові металічні елементи перебувають у лівому нижньому куті довгого варіанта періодичної системи. Це францій, цезій, радій.

Сильно активні метали з киснем повітря енергійно взаємодіють вже при звичайній температурі, утворюючи оксиди, наприклад:

§ 2Ca + O2 = 2CaO

Тому лужні і лужноземельні метали зберігають під шаром гасу, щоб запобігти їх окисненню киснем повітря. Метали середньої активності окиснюються киснем повітря лише з поверхні, покриваючись тонкою оксидною плівкою, яка запобігає дальшому окисненню металу. Наприклад:

§ 2Zn + O2 = 2ZnO

Але при високій температурі вони енергійно взаємодіють з киснем і перетворюються в оксиди.

Малоактивні (благородні) метали з киснем безпосередньо не реагують взагалі. Більшість металів може безпосередньо реагувати з сіркою, хлором і майже з усіма неметалами, особливо при високій температурі. З водою сильно активні (лужні і лужноземельні) метали взаємодіють вже при звичайній температурі з виділенням водню і утворенням розчинних гідроксидів (лугів), наприклад:

§ 2Na + 2H2O = 2NaOH + H2

§ Ba + 2H2O = Ba(OH)2 + H2

Метали середньої активності, наприклад залізо, реагують з водою (водяною парою) лише при сильному розжаренні:

§ 3Fe + 4H2O = Fe3O4 + 4H2

Мало активні метали з водою не реагують ні при яких умовах. Відношення металів до кислот визначається їх місцем в електрохімічному ряду напруг (ряду активності). Усі метали, що займають місце в ряду напруг лівіше від водню взаємодіють з кислотами з утворенням солі і виділенням водню (з нітратної кислоти водень не виділяється!) Метали, що займають місце в ряду напруг правіше від водню, водню з кислот не витісняють. Але деякі з них можуть реагувати з концентрованою сульфатною кислотою при нагріванні з утворенням солі і виділенням діоксиду сірки SO2, наприклад:

§ Cu + 2H2SO4 = CuSO4 + 2H2O + SO2

 

 

Що ж стосується нітратної кислоти, то при взаємодії її з усіма металами, незалежно від їх місця в ряду напруг, водень з HNO3 не виділяється, а утворюються оксиди азоту і сіль металу.

Наприклад:

§ 3Zn + 2HNO3 + 6HNO3 = 3Zn(NO3)2 + 2NO ↑ + 4H2O

§ 3Ag + HNO3 + 3HNO3 = 3AgNO3 + NO ↑ + 2H2O

 

Метали в природі

Метали складають понад 80% усіх хімічних елементів. Переважна більшість металів зустрічається в природі у вигляді різних сполук і лише деякі з них — у вільному стані. Це так звані самородні метали (золото і платина), а також інколи срібло, ртуть, мідь і інші метали.

Мінерали і гірські породи, придатні для добування з них металів заводським способом, називаються рудами. Важливішими рудами є оксиди (Fe2O3, Fe3O4, Al2O3 • nH2O, MnO2 тощо); сульфіди (ZnS, PbS, Cu2S, HgS і ін.), солі (NaCl, KCl, MgCl2 CaCO3 і т. д.). Малоактивні метали зустрічаються переважно у вигляді оксидів і сульфідів, а активні (лужні і лужноземельні) — винятково у вигляді солей.

 

Одержання металів з руд

В більшості випадків руди містять різні домішки у вигляді піску, глини, вапняку тощо. Ці домішки називають пустою породою. Коли в руді багато пустої породи, тобто коли руда є бідною на корисну речовину, таку руду піддають збагаченню, тобто видаляють з неї частину пустої породи. Різні руди збагачують різними способами.

Для збагачення сульфідних руд звичайно застосовують спосіб флотації (спливання). При цьому способі руду розмелюють у тонкий порошок і заливають у великих чанах водою. До води додають певні органічні речовини (наприклад, соснове масло, вищі жирні кислоти тощо), молекули яких добре адсорбуються частинками сульфідів, і вкривають їх тонкою плівкою, внаслідок чого вони не змочуються водою. Крізь воду продувають повітря, пухирці якого з маслом утворюють піну, а також прилипають до частинок сульфідів, і вони спливають та збираються зверху разом з піною, а змочені водою частинки пустої породи осідають на дно (див. мал. Схема флотаційного апарату). Піну з сульфідами металів зливають з чану і віджимають сульфіди. Так одержують збагачену на корисну речовину руду.

 

Схема флотаційного апарату

Вільні метали добувають з руд різними способами. З оксидних руд метали одержують відновленням їх при високих температурах. При цьому як відновник частіше всього використовують вугілля (кокс) і монооксид вуглецю СО. Наприклад:

§ Fe2O3 + 3C = 2Fe + 3CO ↑

§ Fe2O3 + 3CO = 2Fe + 3CO2

§ SnO2 + C = Sn + CO2

§ 2Cu2O + C = 4Cu + CO2

Інколи відновником служать активні метали. Наприклад, при добуванні хрому, берилію, мангану і ін. як відновник застосовують алюміній (алюмінотермія):

§ Cr2O3 + 2Al = 2Cr + Al2O3

§ 3MnO2 + 4Al = 3Mn + 2Al2O3

У деяких випадках як відновник використовують водень, зокрема при добуванні молібдену, вольфраму, порошкоподібного заліза тощо:

§ Fe2O3 + 3H2 = 2Fe + 3H2O

§ WO3 + 3H2 = W + 3H2O

Сульфідні руди спочатку обпалюють, переводячи їх в оксиди металів, які потім відновлюють. Наприклад:

§ 2PbS + 3O2 = 2PbO + 2SO2

§ PbO + C = Pb + CO ↑

Найактивніші метали — калій, натрій, кальцій і ін. — не можна одержати способом хімічного відновлення їх сполук. Ці метали одержують лише електролізом їх розплавлених солей. Наприклад:

 

Отримання калію електполізом

Застосування металів

Конструкційні матеріали

Метали і їх сплави — одні з головних конструкційних матеріалів сучасної цивілізації. Це визначається насамперед їх високими міцністю, жорсткістю та іншими механічними властивостями, технологічністю у переробці, відносною доступністю, однорідністю і непроникністю для рідин і газів, стійкістю до температурних впливів та впливів навколишнього середовища. Крім того, змінюючи рецептуру сплавів, можна впливати їх властивості у потрібному напрямку і в дуже широких межах.

Електротехнічні матеріали

Метали використовуються як хороші провідники електрики (мідь, алюміній), так і в якості матеріалів з підвищеним опором, котрі працюють при високих температурах: длярезисторів, реостатів і електронагрівальних елементів (ніхром і т.п.)

Інструментальні матеріали

Метали і їх сплави широко застосовуються для виготовлення інструментів (їх робочої частини). В основному це інструментальні сталі і тверді сплави.

Науки, що вивчають метали

Фізика металів (металофізика) — розділ фізики, який вивчає атомно-кристалічну, дефектну і гетерофазну структури металів і сплавів, їх фізико-хімічні властивості. Вивчає також процеси, що мають місце у металах і сплавах при їх отриманні, механічній і термічній обробці та в умовах експлуатації. Металофізика є теоретичною основою металознавства.

Металознавство — наука, що вивчає взаємозв'язки складу, будови та властивостей металів і сплавів, а також закономірності їх зміни при теплових, механічних, фізико-хімічних та інших видах впливу. Металознавство є науковою основою пошуку складу, способів отримання і обробки металевих матеріалів з різноманітними механічними, фізичними і хімічними властивостями.

Література

§ Деркач Ф. А. «Хімія» Л. 1968

§ Металознавство: Підручник / О. М. Бялік, B. C. Черненко, В. М. Писаренко, Ю. Н. Москаленко - 2-ге вид., перероб. і доп. - К.: ІВЦ "Видавництво «Політехніка»",2008 - 384 с.

§ Гуляев А. П. Металловедение. – М.: Металлургия, 1986. – 542 с.

§ Уманский Я. С., Скачков Ю. А. Физика металлов.- М: Атомиздат, 1978. - 405 с.