10. 3. Сознание и Модулирующая система мозга

Обработка информации (выполнение элементарных когнитивных операций) осуществляется в дискретных нейронных сетях. Не все процессы обработки в таких сетях осознаются. Те процессы, которые обеспечивают осведомленность человека о когнитивных операциях, а точнее об их результатах, образуют особую субсистему сознания, ее высший уровень. Это свойство осведомленности обеспечивается включением в ее состав механизма, регулирующего генерализованные и локальные активации мозга. Процессы активации, а также особая операция в виде повторного входа возбуждения непрерывно поддерживают высокий уровень активности нейронных сетей высшей субсистемы сознания. Последняя находится под иерархическим контролем, выполняемым в соответствии с правилом сверху вниз. Командные сигналы из префрон-тальной коры достигают идей и концептов, в закодированном виде хранящихся в теменно-височной ассоциативной коре, извлекают необходимую информацию и переводят ее в рабочую память для контроля за исполнением поведения.

Высший уровень сознания не может существовать без участия модулирующей системы мозга. Генерализованные и локальные влияния из неспецифической системы ствола и таламуса сходятся на клетках нейрональных сетей коры, создавая условия, необходимые для обработки информации. Прерывание связей нейрональных сетей, обрабатывающих информацию, с системой активации, которая модулирует их операции, вызывает нарушение сознания.

309

Зависимость сознания от модулирующей системы мозга дает основание связывать сознание с определенным состоянием мозга, а не с содержанием информационных процессов. С этих позиций «...сознание— это специфическое состояние,при котором только и возможна реализация высших психических функций» (Соколов Е.Н., 1990. С. 1049). Выход из этого специфического состояния приводит к выключению высших психических функций при сохранении механизмов жизнеобеспечения. Существуют разные формы отключения сознания: медленно-волновый сон, обморок, наркоз, эпилептический припадок, травма мозга, отравление. Общим элементом для всех форм потери сознания является выключение, или дезорганизация, различных механизмов модулирующей системы мозга. Поскольку высокое содержание АХ характерно для состояния бодрствования, но не для медленно-волнового сна и анестезии, можно предположить, что одним из возможных модуляторов, определяющих состояние сознания, является АХ. Другими словами, основной вклад в состояние сознания вносит базальная хо-линергическая система переднего мозга.

Различают глобальное и локальное прерывание сознания. Потеря сознания при нокауте — пример глобального отключения сознания, когда удар приходится на ретикулярную формацию ствола мозга. При локализации эпилептического очага в диэнцефальных струкурах мозга припадок начинается с внезапной и глобальной потери сознания. Этот эффект отсутствует, если эпилептический очаг находится вне структур модулирующей системы мозга. Если же он возникает в коре, припадку предшествует появление специфических ощущений, зависящих от функций области его локализации.

Наиболее простой формой перехода к глобальному бессознательному состоянию, связанному с выключением активирующих и включением инактивирующих структур модулирующей системы мозга, является засыпание. Если нет причин, препятствующих сну, например необходимость не прерывать какую-либо работу, переход к появлению в ЭЭГ сонных веретен и медленных (дельта) волн сна совершается резко (пороговый эффект). На фоне ЭЭГ-картины медленного сна сенсорные экстероцептивные стимулы, если только они не вызывают пробуждения, не воспринимаются и не регистрируются в памяти. Подобный амнестический эффект характерен и для обморока. Приходя в себя после глубокого обморока, человек продолжает прерванный ход мыслей. При этом все события во время обморока оказываются невоспринятыми и не зарегистрированными в его памяти.

Одним из примеров локального отключения сознания является зрительное игнорирование (visual neglect), возникающее при пора-

310

жении неспецифического таламуса. Обычно оно бывает односторонним. Несмотря на сохранность специфической системы, человек не обращает внимания на сигнал. Зрительное игнорирование подобно состоянию невнимания. Это состояние можно искусственно смоделировать в опыте, в котором у субъекта создается ошибочная установка на место появления целевого стимула на экране монитора, на возникновение которого в соответствии с инструкцией он должен быстро реагировать движением. При правильной ориентировке испытуемого время реакции укорачивается, при ошибочной — удлиняется. Это и демонстрирует явление зрительного игнорирования, выражающееся в отключении или ослаблении внимания к целевому стимулу.

Предполагают, что причина клинических случаев зрительного игнорирования лежит в нарушениях либо самой системы активации (ослаблении ее эффектов), либо механизмов, контролирующих локальную активацию.

Различные дефекты зрения помогают многое понять в механизмах сознания. Новые открытия связаны с изучением поражения зрения, известного как «слепой взгляд» (blind sight). Анализ природы этой патологии зрения убедительно показал, что осознанное восприятие требует объединения информации от системы «Где» и «Что».

«Слепой взгляд» может возникать из-за некоторого поражения глаз (скотомы1). Его можно выявить, регистрируя движения глаз. Человек с таким дефектом бессознательно переводит глаза на место, где появляется объект. При этом он не видит самого объекта. Другими словами, зрительный объект пространственно выделяется двигательной реакцией (саккадой), которой, однако, недостаточно, чтобы получить информацию о самом объекте.

Согласно одной из теорий движения глаз саккада вызывается сигналом, который поступает в кору, минуя поле 17, прямо к полям 18 и 19 из подкорковых центров (экстрастрпарный путь). Другая теория подчеркивает роль второго зрительного канала, параллельного специфическому, идущему через ЛКТ в поле 17. Этот второй путь берет начало в сетчатке и достигает коры через зрительное двухолмие и подушку таламуса.

Процесс осознания зрительного объекта предполагает взаимодействие двух независимых субсистем зрительного анализатора: «Что» и «Где». Первая опознает объект, его физические качества, вторая — его локализацию в зрительном поле. Субсистема «Что»,

1 Скотома (греч. skotos — темнота) — ограниченный участок в поле зрения, субъективно воспринимаемый как темное пятно или никак не воспринимаемый.

311

использующая вентральный зрительный путь, осуществляет анализ различных признаков сигналов в областях VI, V2, V3, V4 и V5 для последующей их интеграции в нижневисочной коре на ее константном экране признаков. Система «Где» (дорзальный зрительный путь) представлена ретинотопической проекцией в зоне VI (поле 17), которая затем трансформируется в константный экран локализации стимулов. Это достигается в результате объединения ретинальных и проприоцептивных сигналов от движения глаз на нейронах париетальной коры. Оба потока информации от систем «Что» и «Где» с помощью механизма локальной активации объединяются в рабочей памяти (префронтальной коре), что и порождает субъективный образ объекта. Полагают, что интеграция различных признаков объекта, включая его локализацию в зрительном поле, выделенных различными участками коры, осуществляется через механизм высокочастотной синхронизации потенциалов в гамма-диапазоне (Соколов Е.Н., 1997; Singer W., 1990).

10.4. СОЗНАНИЕ И ГАММА-КОЛЕБАНИЯ

В последние годы вновь возродился интерес к проблеме физиологических механизмов сознания. На XXVI Международном психологическом конгрессе, состоявшемся в 1996 г. в Монреале (Канада), проблеме сознания был посвящен специальный симпозиум «Нейрофизиология сознания». Одним из ключевых направлений обсуждения явилась проблема связи сознания с высокочастотной активностью мозга на частоте гамма-колебаний (35-120 Гц). Р. Ллинас (Llinas R.) в своем докладе «Сознание и когерентная активность мозга» определил сознание как синхронизацию нейронной активности. Он предположил, что когерентная электрическая активность достаточно большого числа нейронов создает необходимое и достаточное условие для явления сознания даже в том случае, если при этом сенсорные входы не работают, как, например, во время сновидений. Основу для такой когерентности образуют присущие нейронам электрические свойства, проявляющие себя в ритмах 40 Гц. Таким образом, идея М.Н. Ливанова, высказанная им в 50-х годах о пространственной синхронизации ритмической активности мозга как одном из механизмов обработки информации, получила новое развитие в представлении о кооперативных функциях нейронов, отражающихся в высокочастотной синфазной синхронизации нейронной активности в полосе гамма-колебаний.

312

Можно выделить два подхода к решению проблемы формирования субъективного образа. Одни исследователи связывают появление субъективного образа с представлением о «временном связывании» нейронов. Другая точка зрения подчеркивает роль гностических единиц в формировании субъективного образа.

Принцип «временного связывания» элементарных символов (нейронов) в более сложные структуры на основе корреляции их сигналов во времени был предложен К. Фон дер Малсбургом и В. Шнайдером (Von der Malsburg С., Schneider W., 1986). В их модели организации сложной структуры (гештальта) нет места «гностическим единицам». Ансамбль возникает как констелляция корреляционно связанных элементарных символов (нейронов). Идея «временного связывания» нейронов в ансамбли через механизм общей для них высокочастотной синхронизации разделяется многими исследователями (Crick F., Koch Ch., 1990; Singer W., 1990; Crick F., 1995). P. Экхорн и др. (Eckhorn R., Bauer R., Jordan W. et al., 1988) вводят понятие пространственного «контраста синхронизации» между областями, представляющими разные объекты, что позволяет различать их — функция так называемой «пространственной сегментации».

Сторонники данной точки зрения исходят из феномена син-фазности высокочастотных потенциалов у нейронов зрительной коры кошки, избирательно возбуждающихся при восприятии одного и того же зрительного объекта. В. Зингер с коллегами из Института мозга им. Макса Планка во Франкфурте полагают, что колебания 40 Гц могут синхронизировать импульсацию нейронов, реагирующих на различные аспекты воспринимаемого эпизода, и, таким образом, представлять собой прямой нервный коррелят сознания.

Сходный эффект синхронизации биотоков на частоте гамма-колебаний обнаружен и у собак (Думенко В.Н., 1997). После выработки у животного пищевого инструментального условного рефлекса в периоды между стимулами (2—3 мин) собака демонстрировала поведение ожидания условного сигнала, принимала позу стойки и фиксировала глазами кормушку. Это состояние было очень устойчивым и сочеталось с усилением когерентных связей и уменьшением фазовых сдвигов между высокочастотными колебаниями (40-170 Гц) электрокортикограмм от разных зон коры. Автор рассматривает эту картину как отражение «внутреннего образа ситуации», который содержит знания, накопленные во время обучения. А феномен синфазности высокочастотных колебаний интерпретирует не только как коррелят «когнитивного образа», но и как сам механизм его образования («целостности»).

313

Во многих других работах также описана реакция нейронов в виде появления у них синхронизированных высокочастотных разрядов; реакция вызывается только тем стимулом, на восприятие которого нейроны избирательно настроены, например на линию, ориентированную определенным образом. Кросскорреляционный анализ ответов нейронов зрительной коры кошки, пространственно удаленных, но обладающих общей избирательностью в отношении определенных параметров стимула, показал, что такие нейроны характеризуются синхронизированными разрядами на частоте около 40 Гц. При этом фазовый сдвиг между ними равен нулю. Изменение параметров стимула может увеличить или, наоборот, уменьшить степень синхронизации этих нейронов. Так, у двух клеток зрительной коры, принадлежащих к одной группе нейронов-детекторов и находящихся на расстоянии 7 мм друг от друга, можно было видеть синхронизацию активности, когда через их рецептивные поля одинаковым образом двигались полоски (в одном направлении и с одинаковой скоростью). Если же полоски пересекали в разных направлениях рецептивные поля нейронов, синхронизация их разрядов не возникала (рис. 60). Когерентная спайковая активность зрительных нейронов обнаружена в полях 17 и 18.

В опытах на бодрствующих обезьянах была выявлена другая важная особенность феномена гамма-активности у детекторных нейронов: чем ближе стимул по своим характеристикам к селективным свойствам нейрона, тем больше у этого нейрона амплитуда локальных ритмических потенциалов на частоте 70—80 Гц. Поэтому такие ритмические осцилляции получили название стимул-специфических. С позиции модели «временного связывания нейронов» трудно объяснить этот факт. Она не может ответить также на вопрос: «Почему корреляционные функции разрядов нейронов и локальных потенциалов характеризуются нулевым сдвигом по фазе?»

Другая точка зрения на формирование субъективного образа исходит из признания иерархической организации нейронных структур. Идея принадлежит Ю. Конорскому (1970), который выдвинул концепцию гностических единиц — нейронов, реагирующих на сложные признаки в результате конвергенции на них нейронов более низкого уровня — детекторов элементарных признаков. Формирование образа связано с активацией нейронного ансамбля, который представляет собой набор нейронов, имеющих общий вход и конвергирующих на нейроне более высокого порядка. Дальнейшее развитие концепция гностических единиц получила в теории «иерархическая модель гешталъта» (Соколов Е.Н., 1996). Признавая неоспоримость экспериментальных фактов — су-

314

ществование гностических единиц и высокочастотных когерентных колебаний между разными участками коры, Е.Н.Соколов предлагает иную интерпретации природы и механизма действия высокочастотных гамма-ритмов.

В его модели нейроны, обнаруживающие синхронизированный ритм в полосе гамма-колебаний, не связаны между собой общим источником. Но сенсорный стимул, приходящий к нейронам, одновременно возбуждает у них постсинаптические потенциалы, которые и запускают их собственную пейсмекерную активность. Если нейроны принадлежат к одной группе детекторов (например, детекторов, реагирующих на определенное направление и скорость движения), частоты их пейсмекерной активности совпадают. Такая модель объясняет увеличение амплитуды синхронизированных ритмов при приближении стимула к селективным свойствам нейрона. Пейсмекер генерирует максимальную активность, когда характеристики сенсорного сигнала совпадают с резонансной частотой данного пейсмекера. Нейроны-детекторы с пейсме-керными свойствами, принадлежащими к одной группе, имеют общую резонансную частоту. Отсутствие фазового сдвига у феномена синхронизации является следствием одновременного прихода сенсорного сигнала на нейроны-детекторы с идентичными свойствами. Таким образом, когерентность высокочастотных колебаний в группе нейронов, по-видимому, возникает в результате прихода к ним общего сигнала, на который они одинаково реагируют. Поэтому синхронизация нейронной активности на частоте гамма-колебаний не является выражением работы специального механизма связывания элементов.

Данные о пейсмекерных свойствах специфических нейронов таламуса, которые способны генерировать высокочастотные ритмы за счет высокопороговых кальциевых каналов, локализованных на их дендритах, говорят в пользу этой гипотезы. Специфический сигнал на уровне таламуса запускает особую форму неспецифических влияний — высокочастотные ритмические колебания, частота которых, по-видимому, связана со специфичностью стимула. Такая частотно-специфическая активность выделяет лишь свой ансамбль нейронов, который избирательно настроен на восприятие данного стимула, вызывая у него особое состояние — режим синхронизированной активности.

В концепции Е.Н. Соколова механизм появления субъективного образа связан с активацией гностической единицы, которая является вершиной пирамиды, построенной из нейронных детекторов признаков. Дополнительная активация гешталып-пирамиды, поступающая от активирующей системы мозга— необходимое уело-

316

Гностический нейрон

Рис. 61. Нейронная структура гештальт-пирамиды.

На нижнем уровне — простые детекторы (кружки). Следующий уровень представлен сложными детекторами (звездочки). Пунктиром показаны пути воздействия S-стимула. Детекторы простых и сложных признаков конвергируют на гностическом нейроне (вершина пирамиды) (по Е.Н. Соколову, 1996).

вие каждого осознанного восприятия. Активирующие влияния достигают гностической единицы в форме высокочастотных колебаний мембранного потенциала. Только конвергенция специфического сигнала с механизмом неспецифической активации на нейронах таламуса создает необходимое условие для сознательного переживания. Возбуждения из таламуса сначала достигают нейронов-детекторов элементарных признаков, организованных в соответствующие карты — экраны. Элементарный признак вызывает максимум возбуждения на определенном месте этого экрана. Комплексные признаки образованы комбинациями элементарных признаков и кодируются максимумами возбуждения на картах сложных детекторов. Детекторы простых и сложных признаков образуют основание гештальт-лирамиды и имеют синапсы на гностической клетке (рис. 61). При действии сложного стимула нейроны на разных уровнях соответствующей гештальт-пирамиды «подсвечиваются» активирующими влияниями, представленными внутриклеточными колебаниями мембранного потенциала клеток. Такая активированная гештальт-пирамида иерархически организованных нейронов представляет базисный механизм актов сознания (Соколов Е.Н., 1996).

317

Существуют три уровня субъективного отражения: перцептивный, мнемический и семантический. Возникший перцептивный образ в результате активации гештальт-пирамиды сличается с набором следов долговременной памяти и фиксируется в ее специальных нейронах. Нейроны памяти имеют двусторонние связи с семантическим экраном. Семантические нейроны реализуют акт категоризации. В обычных условиях все три уровня отображения слиты в едином акте сознания.

10.5. СОЗНАНИЕ И ПАМЯТЬ

Во многих концепциях сознания подчеркивается, что формирование субъективного образа объекта при его восприятии при-сходит в результате интеграции сигналов в сенсорной системе с информацией, хранящейся в памяти. В теории сознания П.В. Симонова память занимает центральное место, так как само сознание определяется как знание, которое может быть передано другому. Эта позиция распространяется и на представление о механизме возникновения эмоции как особого вида психического отражения. Согласно потребностно-информационной теории эмоций П.В. Симонова эмоции возникают в результате сопоставления получаемой информации и той информации, которая необходима для удовлетворения биологической потребности и должна быть извлечена из памяти.

Передние отделы новой коры и гиппокамп рассматриваются как информационная система, в которой на основании текущей информации и содержащейся в памяти оценивается вероятность удовлетворения потребности, зависимой от соотношения имеющейся и требуемой информации. От ее величины зависят знак и интенсивность эмоций.

В теории «информационного синтеза как основы ощущения» A.M. Иваницкого также указывается на роль памяти в процессе осознания воспринимаемого стимула. Автор выделяет три этапа формирования зрительного образа. Первый связан с анализом физических характеристик стимула и представлен ранними компонентами ВП с латенцией до 100 мс; он рассматривается как подготовительная фаза восприятия и на психологическом уровне не сопровождается каким-либо феноменом. Второй этап включает операции сравнения физических параметров стимула с информацией, хранящейся в памяти, благодаря чему определяется значимость стимула. Именно этот этап связывают с появлением ощущения, которое представлено среднелатентным компонентом ВП (100—200 мс). На третьем этапе происходит окончательное опозна-

318

ние стимула, что отражается в волне ПЗОО ВП преимущественно в передних отделах коры больших полушарий.

Синтез двух видов информации — текущей и извлекаемой из памяти — создает основу для возникновения субъективного явления. Генерация ощущений совершается циклически с периодом 100—150 мс благодаря механизму повторного входа возбуждения. Этот процесс рассматривается как психологический мониторинг происходящих событий (Иваницкий A.M., 1997).

В свете последних данных о функциях рабочей памяти интеграцию возбуждения от сенсорного стимула с информацией, хранящейся в памяти, можно описать следующим образом. Зрительный объект опознается, когда его различные признаки интегрируются в единое целое, включая местоположение его в пространстве. Это происходит в результате соединения информации от двух подсистем зрительного анализатора «Что» и «Где» с информацией из долговременной памяти, где следы также хранятся в двух системах: «Что» (в нижневисочной коре) и «Где» (в теменной). Место интеграции всей информации — рабочая память (префронтальная кора). Предполагается, что переписывание информации в РП из двух блоков сенсорной системы «Что» и «Где» осуществляется с помощью механизма локальной активации. За счет обратных связей от РП к долговременной памяти и сенсорной системе в нижневисочной и теменной коре происходит актуализация определенных следов памяти, а также подчеркивание в сенсорной системе признаков воспринимаемого объекта. Вербальный сигнал актуализирует структуры долговременной памяти, переписывая из нее необходимую информацию в РП. Для этого он действует через неспецифическую систему мозга, создавая специфические паттерны неспецифического возбуждения, модулирующие сенсорные, мнемические и семантические уровни обработки информации. Можно предположить, что префронтальная кора в режиме РП формирует программу не только реализации поведения, моторных актов, но и процесса восприятия объекта за счет взаимодействия сенсорной системы с долговременной памятью и модулирующей системой мозга.