Основные формулы для математического ожидания

Математи́ческое ожида́ние — среднее значение случайной величины, распределение вероятностей случайной величины, рассматривается в теории вероятностей. В англоязычной литературе через , в русской — . В статистике часто используют обозначение .

 

Определение

Пусть задано вероятностное пространство и определённая на нём случайна величина . То есть, по определению, — измеримая функция. Если существует интеграл Лебега от по пространству , то он называется математическим ожиданием, или средним (ожидаемым) значением и обозначается или .

Основные формулы для математического ожидания

§ Если — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:

Математическое ожидание дискретного распределения

§ Если — дискретная случайная величина, имеющая распределение

,

то прямо из определения интеграла Лебега следует, что

.

Математическое ожидание абсолютно непрерывного распределения

§ Математическое ожидание абсолютно непрерывной случайной величины, распределение которой задаётся плотностью , равно

 

Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначении или . Квадратный корень из дисперсии, равный , называется среднеквадрати́чным отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Определение

Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

Свойства

§ Дисперсия любой случайной величины неотрицательна:

§ Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;

§ Если случайная величина равна константе, то её дисперсия равна нулю: Верно и обратное: если то почти всюду;

§ Дисперсия суммы двух случайных величин равна:

, где — их ковариация;

§ Для дисперсии произвольной линейной комбинации нескольких случайных величин имеет место равенство:

, где ;

§ В частности, для любых независимых или некоррелированных случайных величин, так как их ковариации равны нулю;

§

§

§

 

Среднеквадратическое отклонение

Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.

Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины. Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

Среднеквадратическое отклонение:

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии):

где — дисперсия; i-й элемент выборки; — объём выборки; — среднее арифметическое выборки:

Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной.

На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.

Ковариа́ция (корреляционный момент, ковариационный момент) в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.

Пусть — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

,

в предположении, что все математические ожидания в правой части определены.

Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — то убывать.

Однако только по абсолютному значению ковариации нельзя судить о том, насколько сильно величины взаимосвязаны, так как её масштаб зависит от их дисперсий. Масштаб можно отнормировать, поделив значение ковариации на произведение стандартных отклонений (квадратных корней из дисперсий). При этом получается так называемый коэффициент корреляции Пирсона, который всегда находится в интервале от −1 до 1.

Случайные величины, имеющие нулевую ковариацию, называются некоррелированными. Независимые случайные величины всегда некоррелированы, но не наоборот.

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров.

Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве:

Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость - величины коррелируют.

В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается). Возможны также такие случаи:

Отрицательная корреляция.

Отсутствие корреляции – взаимосвязь между величинами исключена.

Коэффициент корреляции:

r изменяется в пределах от -1 до 1. В данном случае это линейный коэффициент корреляции, он показывает линейную взаимосвязь между x1 и x2: r равен 1 (или -1), если связь линейна.

Коэффициент r является случайной величиной, поскольку вычисляется из случайных величин. Для него можно выдвигать и проверять следующие гипотезы:

1. Коэффициент корреляции значимо отличается от нуля (т.е. есть взаимосвязь между величинами):

2. Отличие между двумя коэффициентами корреляции значимо:

Методами корреляционного анализа решаются следующие задачи:

1) Взаимосвязь. Есть ли взаимосвязь между параметрами?

2) Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.

3) Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

где , — среднее значение выборок.