Задание 3. Замена переменной.
Пусть требуется найти интеграл с непрерывной подынтегральной функцией .
Сделаем замену переменных, положив , где функция
удовлетворяет следующим двум условиям:
1) - непрерывная функция;
2) - непрерывно дифференцируемая функция, имеющая обратную функцию.
Тогда .
После интегрирования возвращаются к старой переменной обратной подстановкой.
Пример. .
Решение.
.
Пример. .
Решение.
.
Пример. .
Решение.
Полагая и продифференцировав обе части этого равенства, получаем:
или
.
Тогда первоначальный интеграл равен:
.
Пример. .
Решение.
.
Задание 4. Интегрирование по частям.
Интегрированием по частям называется нахождение интеграла по формуле:
,
где
и
— непрерывно дифференцируемые функции от
. С помощью этой формулы нахождение интеграла
сводится к отысканию другого интеграла
. Ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен.
Применяется формула в следующих случаях:
1) Подынтегральная функция является произведением многочлена на показательную или тригонометрическую функцию.
Это интегралы вида: ,
,
.
В этом случае в качестве выбирается многочлен
.
Пример. .
Решение. Подынтегральная функция есть произведение многочлена на тригонометрическую функцию (1 случай). Поэтому в качестве выбирается многочлен.
.
2) Подынтегральная функция является произведением многочлена на логарифмическую или обратную тригонометрическую функцию.
Это интегралы вида: ,
,
,
,
.
В качестве следует принимать обратную тригонометрическую или логарифмическую функцию.
Пример. .
Решение. Подынтегральная функция есть логарифмическая функция (2 случай). Поэтому в качестве выбирается логарифмическая функция.
.
3) Интегралы вида: ,
.
Метод интегрирования по частям применяется два раза до появления исходного интеграла. Оба раза в качестве берем либо
, либо тригонометрическую функцию. Получаем уравнение относительно исходного интеграла и решаем его.
Пример. .
Решение. Это интеграл вида: (3 случай). Поэтому в качестве
выберем
.
.
Обозначим исходный интеграл .
Получим уравнение:
;
;
.
Таким образом, .
В некоторых случаях метод интегрирования по частям надо применять неоднократно.
Пример. .
Решение.
.