45. Котик М. А. Саморегуляция и надежность человека-оператора. Вильнюс, 1974.
46. Л а з а р у с Р. Теория стресса и психофизиологические исследования.— В кн.: Эмоциональный стресс. Под ред. Л. Леви. Л., «Медицина», 1970.
47. Л е о н о в а А. Б. Проблема субъективной диагностики утомления. «Техническая эстетика», 1977, № 9.
48. Ломов Б. Ф., Николаев В. И., Рубахин В. Ф. Некоторые вопросы применения математики в психологии. В кн.:— Математика и психология. Отв. ред. В. Ф. Рубахин. М., «Наука», 1977.
49. М е д в е д е в В. И. Функциональные состояния оператора.— В кн.: Эргономика. Принципы и рекомендации, выя. 1. М., изд. ВНИИТЭ, 1970.
50. М е й с т е р Д., Р а б и д о Дж. Инженерно-психологическая оценка при разработке систем управления. Пер. с англ. М., «Сов. радио», 1970.
51. Методы социальной психологии. Под ред. Е. С. Кузьмина и В. Е. Семенова. Л., Изд-во Ленингр. ун-та, 1977.
52. Небылицин В. Д. Основные свойства нервной системы человека. М., -Педагогика», 1976.53. Нечаев А. П. (ред.). Психическое утомление. М.— Л., ГИЗ, 1929.
54. Новиков М. А. Принципы и методы группового отбора.— В кн.: Материалы III Всесоюзного съезда общества психологов СССР, т. III., вып. 1. M. 1968.
55. О г у р ц о в А. П., Разумов А. Е., Юдин Б. Г. Научно-техническая, революция и особенности современного научного познания. М., «Знание», 1977.
56. О льш а некий В. Б. Социометрия. БСЭ, т. 24 (I), изд. 3-е. М., «Советская энциклопедия», 1976.
57. П а й а р Ж. Применение физиологических показателей в психологии.— В кн.: Экспериментальная психология, вып. 3. М., 1970. Под ред. П. Фресса » Ж. Пиаже.
58. Платонов К. К. Вопросы психологии труда. Изд. 2-е. М., 1970.
59. Практикум по физиологии труда. Под ред. К. С. Точилова. Л., Изд-во Ленингр. ун-та. 1970.
60. Проблемы инженерной психологии, вып. 4. Л., 1956.
61. Процесс социального исследования. Вопросы методологии, методики и организации марксистско-ленинских социальных исследований. Пер. с нем. М., «Прогресс», 1975.
62. Психология и математика. Отв. ред. В. Ф. Рубахин. М., «Наука», 1976.
63. Розен блат В. В. Проблемы утомления. Изд. 2-е. М., «Наука», 1975.
64. Р о н ж и н О. В. Информационные методы исследования эргатических систем. Л., «Машиностроение», 1976.
65. Руководство к практическим занятиям по гигиене труда. Под ред. 3. И. Из-раэльсона и Н. Ю. Тарасенко. М., «Медицина», 1973.
66. С а ф о н о в В. К. Прогнозирование надежности оператора в производственной деятельности.— В кн.: Психология — производству и воспитанию. Л., Изд-во Ленинград, ун-та, 1977.
67. Справочник по гигиене труда. Ред. Б. Д. Карпова, В. Е. Ковшило. Л., «Медицина», 1976.
68. С у х о д о л ь с к и й Г. В. Оценка компоновки приборных панелей и панелей органов управления.— В кн.: Методология исследований по инженерной психологии и психологии труда, ч. 2. Л., Изд-во Ленингр. ун-та, 1975.
69. Теп лов Б. М. Проблемы индивидуальных различий. М., 1961.
70. Укреплять взаимосвязь общественных, естественных и технических наук.— «Коммунист», 1977, № 1.
71. Фридман Л. М. О путях развития математической психологии.— «Вопросы психологии», 1970, № 4.
72. Фридман Л. М. О некоторых проблемах моделирования и математизации в психологии.— «Вопросы психологии», 1974, N° 5.
73. Хомская Е. Д. Мозг и активация. М., Изд-во Моск. ун-та, 1972.
74. Чернышева О. Н., Иванова Е. М., С троки на А. Н., Лидо-в а В. Б. Некоторые методы эргономического анализа деятельности в условиях производства.— В кн.: Эргономика. Принципы и рекомендации, вып. 2, М., изд. ВНИИТЭ, 1971.
75. Ш т о ф ф В. А. Моделирование и философия. М.— Л., «Наука», 1966.
76. Эргономика.—Труды ВНИИТЭ, вып. 10. М., 1976.
77. Ю д и н Э. Г. Методологический анализ, его основные задачи и формы.— «Политическое самообразование», 1975, № 8.
78. Ядов В. А. Социологическое исследование. Л., Изд-во Ленингр. ун-та, 1972.
79. Bart ly S. H., Chute E. F. Fatigue and impairment in man. N. Y., 1947.
80. В a r t1 e 11 F. С Psychological criteria of fatigue. — In: «Simposeum of fatigue» (eds. Floyed W. F. & Welford А. Т.). L., 1953.
81. Cameron С A theory of Fatigue. — In: Man under stress (Ed. Welford А. Т.). L., 1974.
82. С a m p b e 11 F. W., Robson J. G. Application of Fourier analysis to the visibility of gratings. — «J. Psysiol.», 1968, 197.
83. Е У s е п с к М. W. Human memory: theory, research and individual diiferen-
ces. Oxford, 1977.
84. Gibson J. J. The perception of visual world. Boston, 195°. 85. Kaufman L. Sight and mind. N. Y., 1974.
86. Kelly D. H. Frequency doubling in visual responses. — «J. opt. Soc. Am.», 1966, 56.
87 Meister D. Behavioral foundations of system development. Wiley, N. Y., 1976.
88. Meister D. Human Factors: Theory and Practice. N. Y., 1971.
89. Meisser U. Cognitive Psychology. N. Y., 1967.
90. Phillips W. A., Christie D. F. M. Components of visual memory. — «Q. J. exp. Psychol.», 1977, 29.
91. Riedwyl H., Scha froth M. Grafische Darstellung mehrdimensionaler Beobachtungen. — «EDV in Medizin u. Biologie», 1976, N 7.
92. S t e r n b e r g S. Memory scanning: new findings and current controversies. — In: Dentsch D. and J. A. Deutsch: Short-term memory. N. Y., 1975.
4
Принципы эргономического анализа трудовой деятельности
Категория деятельности является важнейшей в системе формирующегося эргономического знания. Труд осуществляется в различных формах предметно-практической, производственной, познавательной и управляющей деятельности. «Деятельность есть специфически человеческая форма отношения к окружающему миру, содержание которой составляет целесообразное изменение и преобразование этого мира» [62, с. 267—268]. Для человека объекты природы утрачивают свою непосредственность и выступают как предметы, т. е. прежде всего как средства изготовления орудий. Использование орудий труда предполагает постановку цели и руководство-вание ею как идеальным образом требуемого продукта. Эту основную особенность трудовой деятельности К. Маркс охарактеризовал следующим образом: «В конце процесса труда получается результат, который уже в начале этого процесса имелся в представлении человека, т. е. идеально. Человек не только изменяет форму того, что дано природой; в том, что дано природой, он осуществляет вместе с тем свою сознательную цель, которая как закон определяет способ и характер действий и которой должен подчинять свою волю» [1, с. 189]. В этом отрывке отчетливо указаны основные структурные компоненты трудовой деятельности: цель как идеальное представление результата, способ или средство ее достижения и, наконец, воля, т. е. определенные личностно-смысловые образования.
Деятельность в эргономике выступает в качестве предмета объективного научного изучения. Она расчленяется и воспроизводится в теоретических схемах и моделях в соответствии с методологическими принципами, развитыми в науке, и в зависимости от конкретных эргономических задач. Деятельность в эргономике выступает и как предмет управления, т. е. то, что подлежит организации в слаженную систему функционирования и (или) развития на основе совокупности фиксированных принципов, которые должны быть сформулированы в эргономике, в социальной психологии и социологии труда. Деятельность в эргономике выступает и как предмет проектирования, т. е. перед эргономикой стоит задача выявления способов и условий оптимальной реализации определенных (преимущественно новых) видов трудовой (и профессионально-учебной) деятельности. Наконец, деятельность в эргономике выступает и как предмет многоплановой оценки, которая и должна осуществляться в соответствии с различными критериями, такими, как эффективность, надежность, удовлетворенность работой, комфортность и т. п. Таким образом, деятельность выступает в эргономике как начало, содержание и завершение эргономического анализа, организации, проектирования и оценки. Естественно, что такая самая общая характеристика функций деятельности может играть лишь роль методологического ориентира эргономических исследований. Для решения научных и практических задач эргономики понятию деятельности должен быть придан определенный конструктивный смысл. Эта задача отнюдь не простая, поскольку в эргономике пока еще недостаточно развиты собственные концептуальные схемы анализа деятельности. В эргономике поэтому широко используются концептуальные схемы анализа трудовой деятельности, имеющиеся в смежных науках, особенно в психологии и социологии. Эти концептуальные схемы не только ассимилируются, но и трансформируются эргономикой в соответствии со спецификой решаемых ею задач. Эргономика стоит перед необходимостью разработки методов анализа и выявления функциональных структур различных видов трудовой деятельности: от сравнительно элементарных до предельно сложных, порожденных научно-технической революцией. Таково обязательное условие оптимизации трудовой деятельности, рационального проектирования ее новых видов и форм. В противном случае задачи эти решаются либо на основании здравого смысла, либо путем эмпирического перебора множества факторов, так или иначе влияющих на эффективность и другие аспекты трудовой деятельности, т. е. методом последовательных приближений.
Прежде чем характеризовать функциональную структуру трудовой деятельности, единицы ее анализа и типы связей между ними, необходимо охарактеризовать основные виды трудовой деятельности.
§ 2. Классификация рабочих профессий
В историческом аспекте выделяют три основные стадии развития техники и труда или системы «техника — человек»: ручной труд, механизированный труд, автоматизированный труд. Всеэти типы труда имеют место в современном производстве. Эргономика, возникнув на стадии автоматизированного труда, имеет тем не менее отношение ко всем трем его типам. Эргономика нуждается в стройной классификации современных видов труда. На нынешнем этапе представляется целесообразным воспользоваться классификацией, созданной в ЦСУ СССР для группировки рабочих (профессий) по признаку механизации труда при проведении переписи профессионального состава рабочих. Указанное деление рабочих на группы по признаку механизации труда, в частности, успешно использовалось при социологическом анализе проблем труда [59]. Согласно этой классификации выделяют пять групп рабочих, различаемых по степени механизации трудовой деятельности.
Первая группа — рабочие, выполняющие работу при помощи автоматов, автоматизированных аппаратов и установок. Сюда относятся рабочие, наблюдающие за работой автоматических и полуавтоматических блоков, агрегатов, аппаратов, станков и т. п., регулирующие режим их работы, настраивающие и налаживающие их. К этой же группе относятся и рабочие полуавтоматических машин, станков, аппаратов, если их функцией также являются контроль и регулировка работы полуавтоматов; наладчики и настройщики полуавтоматов, у которых преобладает функция наблюдения.
Вторая группа — рабочие, выполняющие работу при помощи машин, станков, механизмов, аппаратов, механизированного инструмента (станочники, машинисты, шоферы, трактористы, аппаратчики, мотористы, забойщики с отбойным молотком, газо-и электросварщики и т. п.). Для всех этих рабочих характерна прежде всего функция непосредственного управления машиной, аппаратом. Внутри этой группы иногда вводится разделение на подгруппы в зависимости от совершенства применяемых орудий труда.
Третья группа — рабочие, выполняющие работу вручную при машинах и механизмах, дополняющие своим ручным трудом работу машин (подсобные рабочие): грузчики при контейнерах и транспортерах; сортировщики, фасовщики, упаковщики, мойщики, разливщики и другие рабочие, занятые при машинах и механизмах. Рабочие этой группы могут быть заняты на совершенно аналогичных работах в равной мере как у неавтоматических машин, так и у автоматов и полуавтоматов. Для рабочих всей этой группы характерен малоквалифицированный, обычно монотонный труд.
Четвертая группа — рабочие, выполняющие работу вручную или с помощью немеханизированного инструмента, занятые не при машинах и механизмах, т. е. на чисто ручных работах (рабочие малоквалифицированного труда мануфактурного типа, рабочие высококвалифицированного ремесленного типа, рабочие высококвалифицированного труда на ручной комплескной сборке и подналадке сложносборных изделий.
Пятая группа — рабочие, выполняющие работу по ремонту машин и механизмов, слесари, электрослесари, электромонтеры-ремонтники, включая дежурных. К этой же группе относятся наладчики, настройщики станков, машин, установщики инструмента, у которых преобладает функция наладки.
Вместе с тем рабочие ремонтных групп, участков, мастерских,, цехов, заводов, которые заняты не на комплексном ремонте машин, а на специализированных операциях, относятся к какой-либо из первых четырех групп. Например, токари и другие станочники, газо- и электросварщики, занятые на ремонтных работах, относятся ко второй группе, как рабочие, выполняющие работу при помощи машин и механизированного инструмента.
В приведенной классификации переплетаются работы, связанные с ручным, машинным и автоматизированным производством. Высказываются критические замечания по поводу строгости классификации в третьей и четвертой группах, которые включают в себя как неквалифицированных (подсобники, такелажники, грузчики и т. п.), так и высококвалифицированных (слесари, электромонтеры, слесари-инструментальщики, и т. п.) рабочих ручного труда. Тем не менее пока более совершенной классификации видов трудовой деятельности не создано.
Для целей эргономического анализа в большинстве случаев осуществляется более дробное деление профессий. Так, рабочие автоматизированных систем управления, или операторы (первая группа), подразделяются на пять видов, в соответствии с которы ми определяют пять классов операторской деятельности.
I. Оператор-технолог. Оператор непосредственно включен в технологический процесс, работает в основном в режиме немедленного обслуживания, совершает преимущественно исполнительные действия, руководствуясь при этом четко регламентирующими действия инструкциями, которые содержат, как правило, полный набор ситуаций и решений. Это — операторы технологических процессов автоматических линий, операторы, выполняющие функции формального перекодирования и передачи информации.
II. Оператор-манипулятор. В этом случае для оператора основную роль играют механизмы сенсомоторной деятельности, а также, хотя и в меньшей степени, образного и понятийного мышления. К числу функций оператора-манипулятора относятся управление манипуляторами, роботами, машинами-усилителями мышечной энергии. К этой же категории можно отнести и деятельность операторов, обслуживающих радиолокационные станции — классический объект исследования инженерной психологии. Правда, деятельность этих операторов с неменьшими основаниями может быть отнесена к следующему типу — к деятельности оператора-наблюдателя, поскольку при выполнении функций слежения, сопровождения целей в условиях помех огромная доля нагрузки падает на зрительную систему.III. Оператор-наблюдатель, контролер. Это классический тип оператора (оператор слежения радиолокационной станции, диспетчер транспортной системы и т. п.). Для данного типа деятельности характерен больший «вес» информационных и концептуальных моделей, у него соответственно несколько редуцированы навыки управления (по сравнению с первыми двумя типами деятельности оператора). Он может работать как в режиме немедленного, так и в режиме отсроченного обслуживания. Такой тип деятельности является массовым для операторов технических систем, работающих в реальном масштабе времени.
IV. Оператор-исследователь. Такой оператор в значительно большей степени использует аппарат понятийного мышления и опыт, заложенные в образно-концептуальных моделях. Органы управления играют для него еще меньшую роль, а «вес» информационных моделей, напротив, существенно увеличивается. К таким операторам относятся исследователи любого профиля — пользователи вычислительных систем, дешифровщики объектов (изображений) и т. д.
V. Оператор-руководитель. Он управляет не техническими компонентами системы или машины, а другими людьми. Это управление осуществляется как непосредственно, так и опосредствованно — через технические средства и каналы связи. К таким операторам относятся организаторы, руководители различных уровней, лица, принимающие ответственные решения, обладающие соответствующими знаниями, опытом, тактом, волей, навыками принятия решения и интуицией. Операторы-руководители в своей деятельности должны «играть» не только с объектом, учитывать не только возможности и ограничения машинных компонентов системы, но в полной мере должны учитывать особенности подчиненных — их возможности и ограничения, состояния и настроения. Основной режим деятельности оператора-руководителя — оперативное мышление.
При всем своем несовершенстве эта классификация операторской деятельности проясняет пути согласования внешних средств и способов деятельности и позволяет, по крайней мере на первых порах, лучше ориентировать исследовательскую и практическую работу в области эргономики [39].
В сферу эргономических исследований преимущественно включаются виды трудовой деятельности, которые связаны с использованием технических средств. Труд, выполняемый вручную, иногда включают в сферу изучения эргономики; имеется ряд эргодомических изданий, посвященных проблемам ручного труда.
Универсальной классификации техники еще не создано, что затрудняет разработку ее эргономической классификации, потребность в которой все острее ощущается в связи с необходимостью подготовки эргономических требований и рекомендаций применительно к определенным видам техники. Объектом эргономики являются: производственная техника (машины, механизмы, инструменты, аппараты управления машинами и технологическими процессами, средствами транспорта, коммуникации, связи и т. п.); непроизводственная техника (средства коммунальной и бытовой техники[5], техника передвижения, техника образования и культуры и др.), а также военная техника (танки, ракетные установки, летательные аппараты, надводные и подводные суда и др.).
Для целей предварительного анализа представляет интерес общая классификация орудий и средств труда по степени их автоматизации [43] позволяющая схематично представить основные объекты эргономического анализа:
а) ручной инструмент и простейшие приспособления;
б) механизированный и электрифицированный инструмент;
в) машины без принудительной связи рабочего органа с предметом труда, работающие тогда, когда работает обслуживающий их рабочий;
г) одиночные полуавтоматы, в которых осуществляется принудительная связь рабочего органа с предметом труда, но без автоматической загрузки и выгрузки материалов и продукции;
д) одиночные автоматы, в которых осуществляется автоматизация всех .процессов рабочего цикла, снабжения материалов и вывод готового продукта;
е) полуавтоматические блоки (агрегаты, комбайны), в которых автоматизированы все процессы, кроме загрузки материала съема готовой продукции, как правило, представляют собой комбинацию различных механических устройств (например станка и передаточного механизма);
ж) автоматические блоки, в которых автоматизированы все процессы вплоть до поддержания заданного режима и способов введения регулирующих программ.
Эргономическая классификация видов трудовой деятельности не совпадает ни с классификацией видов труда, ни с классификацией профессий, ни с классификацией орудий труда, т. е. внешних средств трудовой деятельности. В качестве своего главного основания она должна иметь классификацию собственных средств (способов) трудовой деятельности. Такая классификация пока не создана, поскольку представления о внутренних средствах деятельности как в эргономике, так и в психологии до сих пор недостаточно расчленены. Поэтому на настоящем этапе развития эргономики приходится ограничиться обобщенной характеристикой трудовой деятельности с различными средствами труда, обращая при этом внимание на наиболее существенные психологические особенности этих процессов.
В любом труде, как и во всякой другой деятельности (учении, игре), можно выделить когнитивные, исполнительные, мотивационные, в том числе и целевые аспекты. Естественно, что содержание каждого из этих аспектов, равно как и соотношение между ними, конкретно-исторично. Они определяются развитием целей, усовершенствованием средств производства, технологических режимов и условий труда. Особенно отчетливо это обнаруживается при сопоставлении психологических особенностей трудовой деятельности с такими средствами производства, как инструмент, механизированные системы или машины и автоматизированные системы.
Наиболее непосредственное взаимодействие субъекта и объекта труда происходит при использовании орудий или различного рода инструментов. Примером таких видов деятельности может служить не только труд слесаря-инструментальщика, строителя или специалиста по ремонту или наладке, труд врача и конструктора, но и, безусловно, также работников некоторых видов искусства — художников прикладного искусства, скульпторов и т. д. Объект в этих случаях предстает перед субъектом во всем многообразии своих свойств, а субъект обладает многообразными возможностями их изменения и использования с целью получения желаемого результата. Для использования этих возможностей он должен осуществить не только исполнительные, Но и различные аналитические и познавательные действия, иными словами, решить задачу наиболее эффективной организации своих действий. В этом случае само средство производства — орудие, инструмент в своей идее или конструкции— отражает как свойства объекта (форму, фактуру и т. д.), так и функциональные особенности способа действий человека с объектом; усилия, которые он должен приложить, требования точности и скорости действия. Многие давно созданные орудия и инструменты до сих пор поражают своей «разумностью», удобством и простотой их использования, а главное, возможностью с их помощью создавать новые формы объектов или преобразовывать один и тот же объект совершенно различным образом с качественно, а не только количественно разными результатами. Непосредственность взаимодействия с объектом с помощью предметно- и функционально-специфических средств трудовой деятельности создает условия не только для исполнительных, но и для познавательных действий. Их соотношение может быть разным в сходных трудовых процессах, что определяется прежде всего не объектом и средством трудовых действий, а требованиями к результатам этих действий. Требования к функциональным или, например, к эстетическим качествам результата определяют способ трудовых действий и эффективность их осуществления. При использовании орудий человек применяет свои способности, приобретает опыт и навыки в разных сферах трудовой деятельности. Он также и удовлетворяет свои потребности в познании и творчестве. Для данного вида трудовой деятельности характерно создание новых, более удобных или целесообразных средств производства, получение новых результатов.
Иначе протекает деятельность при использовании механизированных средств производства в системе «человек — машина». Объект труда (или исходный материал, заготовка и т. д.) выступает здесь только ограниченным количеством своих свойств, так как машина неспособна учесть все свойства материала. Обеднению качественного содержания взаимодействия с объектом сопутствует и рост требований к количественным характеристикам взаимодействия, например к его скорости или величине затраченной энергии. Соответственно и к трудовым действиям человека в данных условиях предъявляются требования с точки зрения определенного количественного эффекта, т. е. получения заданного объема продукции в минимальные сроки с наименьшими затратами.
При таких условиях трудовой деятельности становится постоянной необходимость повышения четкости, организованности и стереотипности исполнительных действий. В результате в трудовом акте почти совсем не остается «места» для познавательных действий. Само производство не требует и даже не допускает каких-либо отклонений в качественных характеристиках результата по отношению к заданным. Оно требует от человека приложения только ограниченного круга его способностей, главным образом определенных навыков и их эффективной координации с временным режимом работы машины. По существу, объектом трудовых действий для человека становится не только предмет производства, но и сама машина. Именно к ее пространственным и временным особенностям он должен приспособить свои действия.
Соответственно и инициатива человека в оптимизации трудовой деятельности может проявиться главным образом в сфере организации этой деятельности, в выработке профессионального стиля, в совершенствовании технологии, т. е. во всем, что касается способа действий, а не средств производства и свойств объекта. Изучением и анализом эффективности последних занимаются в основном люди других специальностей, которые не участвуют в самом трудовом процессе.
Наконец, в условиях использования автоматизированных средств производства функциональная направленность действий человека еще более дифференцируется, повышаются требования к срокам или скорости выполнения действий, еще более жесткой становится их организация в целом. Жесткая, алгоритмизированная организация действий, например, оператора-наблюдателя или оператора систем слежения далеко не всегда позволяет оператору сформировать наиболее удобный для него способ действия и не создает непосредственно потребностей в улучшении качеств конечного результата. Фактически изменяется само содержание результата. Под ним понимается уже не результат воздействия человека с помощью автоматизированных средств на какой-либо объект, а результат изменений, которые вызываются действиями человека в самом автоматизированном устройстве. И те меры, которыми определяется эффективность режима работы системы, переносятся на действия человека. К ним относятся меры точности, скорости и надежности.
Таким образом, непосредственным объектом деятельности для человека становится само средство производства, а требования к результату взаимодействия ограничиваются его рабочим режимом или состоянием. Практически эти требования относятся только к исполнительным действиям человека и лишь в случае, когда само устройство перестает работать в заданном режиме, человеку представляется возможность совершить некоторые познавательные действия по обнаружению причины аварии. Эти действия характеризуются чаще не мерой потребности, а мерой ответственности. В результате можно было бы заключить, что основными критериями трудовых действий должны быть меры исполнительных действий, которые устанавливаются исходя из эффективного функционирования системы. Однако в условиях автоматизированного производства появляются новые типы профессий: оператора-исследователя и руководителя, которые требуют иного подхода.
В этих видах деятельности все большую роль играют не только совершенное владение орудиями и средствами труда, не только исполнительные и когнитивные процессы, но и процессы формирования или полагания целей и выбора способов их достижения. При этом речь идет о полагании целей вполне конкретных, имманентных процессам труда и динамичным условиям, в которых они протекают, а не внешних по отношению к трудовой деятельности. Эргономический анализ многих современных видов трудовой деятельности предполагает обязательный учет человеческой субъективности, анализ мотивационной сферы и процессов целеполагания, характеристику субъективной представленности целей и их смены в самом процессе труда. Эти требования к эргономическому анализу связаны с тем, что цели вплетаются в трудовой процесс, они не могут быть заменены ни трудовыми установками, ни мотивами.
Предметом эргономики является всякая деятельность постольку, поскольку она включена в достаточно широкий контекст технических средств. Это, естественно, не означает, что эргономика тождественна общей теории деятельности — у нее гораздо более узкие задачи, связанные прежде всего с анализом и целенаправленным конструированием существующих видов трудовой деятельности. Именно поэтому, как отмечалось ранее, эргономика вносит вклад в развитие общей теории трудовой деятельности человека в условиях современного производства.
Определение деятельности как предмета эргономического исследования сталкивается с серьезными трудностями. Это обусловлено также и тем, что разграничение понятий «деятельность», «труд», «трудовая деятельность» почти не предпринималось в нашей литературе, а их различное употребление носит скорее интуитивный, чем научно обоснованный характер. Несмотря на то что понятия деятельность и труд имеют много общего, разграничение их объема и содержания не может быть осуществлено механически [10]. И такое разграничение представляет собой далеко не простую задачу. Дело даже не в том, что понятия труд и деятельность являются перекрещивающимися. Между ними имеется сложная система взаимосвязей (развития, функционирования и пр.). Труд в такой же степени является условием развития деятельности, в какой развитие деятельности является условием развития труда. Именно поэтому в общефилософских или социологических исследованиях обнаруживается значительно больше сходства между ними, чем различий [10]. Такой же является ситуация и в эргономике, которая оказывается связанной с общей теорией деятельности или с общими теоретическими представлениями о деятельности человека. Методологически это выглядит вполне естественно: специально-научное изучение деятельности должно иметь в качестве своих теоретических и методологических предпосылок некоторые общие представления о деятельности в целом, о законах ее организации и строения. Практически же, как отметил Э. Г. Юдин, дело обстоит значительно сложнее; современное научное знание, по существу, не располагает теоретически развернутой феноменологией деятельности в целом, поэтому у исследователя деятельности фактически остается единственная возможность, если он пытается отыскать и явным образом задать теоретическое основание своей работы, обратиться к представлениям о деятельности, которые выработала психология [62, с. 338]. По этому пути и пошли авторы при анализе функциональной структуры исполнительной и познавательной деятельности, который будет проведен в следующих параграфах настоящей главы.
§2. Функциональная структура исполнительных (перцептивно-моторных) действий
В Предисловии к «Очерку рабочих движений человека», опубликованному в 1901 г., И. М. Сеченов писал, что предмет его очерка «составляют вопросы о сложных мышечных движениях, при посредстве которых человек производит так называемые внешние работы, т. е. действует силами своих мышц на предметы внешнего мира» [54]. Хотя с тех пор существенно изменился характер «внешних работ» и появились совершенно новые типы трудовой деятельности, связанной с управлением сложными техническими устройствами, до настоящего времени справедливы слова Сеченова о том, что работа всегда была и всегда остается жизненной функцией мышечной системы человека, как бы ни вытесняла современная техника из промышленной жизни мускульный труд человека. Для решения задач управления и оптимизации исполнительной деятельности и задач проектирования ее новых видов и форм необходимо провести ее анализ и выявить общие принципы развития и становления ее функциональной структуры. Это необходимо для организации рационального обучения и тренировки, формирования совершенных навыков, организации режимов труда и отдыха, препятствующих утомлению.
Исполнительное или управляющее действие в эргономике — это приобретенное в результате обучения и повторения умение (навык) решать трудовую задачу, оперируя орудиями труда (ручной инструмент, органы управления и т. п.) с заданной точностью и скоростью. Обычно исполнительные действия входят в качестве компонента в более широкие структуры трудовой деятельности и обеспечивают ее эффективное выполнение наряду с такими компонентами, как познавательные (когнитивные), включая и принятие решения. В зависимости от вида трудовой деятельности удельный вес исполнительных действий может быть весьма различен. Эти действия могут совершаться либо эпизодически, либо занимать все рабочее время. Иными словами, в структуре деятельности в целом они могут занимать место основной цели либо выступать в качестве средства ее достижения, например передачи команды, реализации принятого решения и пр. В последнем случае исполнительные, моторные акты, как правило, просты и не требуют длительного научения. В тех случаях, когда исполнительные действия составляют основное содержание деятельности (работа с ручным инструментом, работа станочника, водительские профессии, работа телеграфиста, оператора ЭВМ, работа в режиме слежения) требуется длительное формирование соответствующих умений и навыков, обеспечивающих своевременное и точное выполнение трудовой деятельности.
Для эргономического обеспечения этих видов исполнительных действий долгое время было достаточно традиционных представлений о моторном и сенсомоторном научении и представлений о двигательных навыках как об автоматизированных в значительной степени стереотипных реакциях, возникающих при многократном повторении сенсомоторных и кинестетических актов. Формирование навыков описывалось обычно в терминах стимулов и реакций, рефлексов, проб и ошибок. При повторении этих элементов, когда это повторение достигает успеха либо подкрепляется, прежде отдельные реакции заменяются комплексами, изолированные движения объединяются в целостные кинетические структуры, своего рода «моторные формы», или «кинетические мелодии».
Подобный «атомарный» или в более позднее время стимульно-реактивный подход, ориентированный на результат, эффект отдельного, сравнительно простого действия, длительное время составлял научные основания концепции «инженерного проектирования» методов работы, которая связана с именами Ф. Тейлора и Ф. Гилбрета.
Методическую основу такого проектирования составил моторно-временной анализ элементарных действий и операций. Ф. Гилбрет выдвинул идею универсальных микродвижений (терблигов), из комбинаций которых, отличающихся по составу и последовательности терблигов, должна состоять любая операция. Выделение терблигов положило начало симплификации и стандартизации трудовых функций работающих. Эта идея была использована на заводах Г. Форда, где путем тщательного проектирования весь трудовой процесс сборки был разбит на столь большое число мельчайших операций, что автомобиль собирался, находясь в безостановочном движении. Форд стремился к тому, чтобы рабочий выполнял единственную работу единственным движением. Ф. Гилбрет изучал движения с помощью хронометража, фото- и киносъемки, циклографии. Сформулированные им принципы экономии движений позволяли отсеивать лишние и выбирать из всех возможных наиболее быстро осуществляемые и требующие минимальных усилий, а также добиваться сокращения перерывов между последовательными движениями. Практические задачи проектирования работы положили начало изучению кинематических и динамических характеристик трудовых движений человека. Результаты и методы этих исследований, а также сформулированный Гилбретом принцип экономии рабочих движений применялись при решении задач организации рабочих мест, конструировании ручного инструмента, размещения органов управления и т. д.
Системы Ф. Тейлора и Ф. Гилбрета, несомненно, внесли существенный вклад в изучение элементарных действий и операций. Однако с помощью моторно-временного анализа движений в том виде, в котором он был предложен, нельзя выявить структуру и механизмы целостной исполнительной деятельности человека. «Надо подчеркнуть...— писал в 1930 г. Н. А. Бернштейн,— что не только методы, но и самое понятие рационализации движений, далеко не так просты, как мыслилось раньше. Нехитрая борьба Тейлора, а позднее Гилбрета с лишними движениями и понимание биомеханической операции как простой суммы последовательных движений, которую можно просеивать как зерно на сортировке, начинает уступать свое место пониманию двигательного комплекса как органически нераздельного целого, всегда отзывающегося на изменения какой-нибудь одной детали перестройкой всех остальных» [5, с. 7].
Подобный инженерный подход к проектированию работы (при всей его первоначальной полезности) подвергается справедливой критике по ряду оснований. Очевидными следствиями предельной симплификации труда, сведения его к отдельным элементарным двигательным актам являются монотония и слабая удовлетворенность работой. И то и другое отрицательно сказывается на производительности труда.
Что касается более сложных видов трудовой деятельности, то по отношению к ним этот подход уже исчерпал свои «оптимизационные» возможности. А сложность исполнительных действий настолько возрастает, что стандартные моторные «формы» или даже кинетические «мелодии» не могут обеспечить ее эффективное выполнение. Речь идет о том, что в условиях современного производства стереотипия трудовых движений постепенно уступает место выполнению целесообразных, разумных, произвольных исполнительных действий. Во многих видах трудовой деятельности все чаще требуется защита от автоматизмов, от импульсивных, рефлекторных реакций. Ошибочные действия, иногда приводящие к аварийным ситуациям, нередко происходят не потому, что человек не успел, а потому, что он поторопился.
Это справедливо и по отношению к станочнику, и по отношению к летчику. Современное механизированное и автоматизированное производство требует от человека выполнения не только заученных, усвоенных действий, но и действий, так сказать, беспрецедентных, которые необходимо не вспоминать, а построить в новой, неожиданно возникшей ситуации. Все более распространенными являются случаи, когда при профессиональном обучении невозможно воспроизвести все существенные условия реального трудового процесса и доучивание происходит при выполнении не учебного, а трудового, исполнительного действия. Адаптация к реальным условиям особенно трудна, если выполнение действии требует совершенной сенсомоторной координации. Ярким примером подобных ситуаций может быть деятельность космонавтов, которым в условиях невесомости необходимо осуществлять стыковку, расстыковку, переходить из одного объекта в другой, выходить в открытый космос, оперировать ручным инструментом, совершать ручную посадку, т. е. оперировать органами управления в переменных условиях гравитации, трансформирующих привычные сенсомоторные координации, силовой рисунок хорошо освоенных прежде движений. В частности, невесомость влияет не только на двигательную сферу, но может вызвать разнообразные неприятные ощущения, нестойкие пространственные иллюзии или даже явления деперсонализации и дереализации восприятий субъекта.
Не меньшую психическую нагрузку вызывает необходимость осуществления исполнительных действий в условиях задержанной обратной связи о результативности выполненного действия. К числу таких действий относится управление луноходом, где задержка не превышает нескольких секунд, и управление супертанкером, где задержка соответствующих эволюций корабля после осуществления управляющего действия исчисляется несколькими минутами. Появление целого ряда сравнительно новых видов деятельности, связанных с управлением космическими кораблями и станциями, дистанционным исследованием планет, манипуляциями радиоактивными элементами, управлением разнообразными движущимися объектами, в том числе и роботами, привело к тому, что в эргономике в качестве специального объекта исследования выделилась деятельность оператора-манипулятора. В этом виде деятельности главенствующую роль играют перцептивно-моторные координации и взаимодействия, хотя, разумеется, значительную роль играет также аппарат образного и понятийного мышления. Исполнительные действия оператора-манипулятора реализуются посредством так называемых «регламентированных движений», требующих высокой не только пространственной, но и временной точности. Это означает, что с точки зрения эффективности их выполнения информативным показателем является не только конечный результат действия (как в случае нажатия на кнопку, клавишу, тумблер), но и текущие характеристики движений, определяющие динамику объекта управления.
Совершенные перцептивно-моторные координации необходимы и для выполнения многих технологических процессов. Ярким примером является деятельность по изготовлению и эксплуатации микроустройств. Размеры микрообъектов и необходимая плотность их компоновки предъявляют такие высокие требования к технологии их изготовления, что производство приборов на их основе стало ювелирной работой. Трудовая деятельность человека, занятого в сфере сборки, например интегральных схем, осуществляется в условиях постоянного зрительного контроля, повышенной напряженности, обусловленной необходимостью выполнять высокоточные и тонкокоординированные, прецизионные двигательные акты. Влияние этих факторов усугубляется еще и тем, что размеры микроустройств находятся на грани видимости невооруженным глазом и визуальный контроль технологических операций возможен лишь при использовании увеличивающих оптических приборов. Хорошо известно, что их использование имеет в качестве следствий закрепощенность позы, гипокинезию, суженное поле зрения и т. п.
Обслуживание многих станков требует высококоординированной работы обеих рук при непрерывном зрительном контроле. Временной интервал, в котором должны быть осуществлены координированные движения, в некоторых случаях не должен превышать 60—80 мс. Необходимость оптимизации подобных видов деятельности привела к выделению в качестве специального объекта эргономического исследования деятельности оператора-технолога.
Приведенные примеры свидетельствуют о том, что «атомарный», стимульно-реактивный подход к исследованию и оптимизации деятельности оператора-манипулятора и оператора-технолога не может удовлетворить современную эргономику. Двигательные акты, исполнительные действия вплетаются в ткань более широких структур деятельности, и успешность исполнительных действий должна оцениваться не сама по себе, а в контексте этих структур. Она зависит от того, насколько верно человек сориентировался в ситуации, т. е. построил ли человек правильный образ этой ситуации и нашел ли он, порой, единственно возможный способ действия.
Формирование образа ситуации, создание программы разумных действий, их точная и своевременная реализация, контроль за их эффективностью — вот проблемы, которые возникли перед современной эргономикой, как и перед комплексом смежных с ней наук: биомеханикой, физиологией и психологией, которые издавна изучали организацию, построение, управление движениями и действиями человека.
Как практические задачи, возникшие перед этими науками, так и логика их собственного развития требуют формулирования новых подходов к изучению исполнительных действий. В противовес атомарно-рефлекторным подходам, ориентированным на задание, результат, эффект и т. п., исследователи разрабатывают структурный, целостный, деятельностный подход, ориентированный не только на усвоение, но и на построение движений, действий, моторных программ и схем.
Тщательный анализ рисунка даже многократно повторяющихся в одной и той же ситуации движений свидетельствует об их уникальности и своеобразии. Детальный анализ моторного акта показывает, что его биодинамическая ткань неповторима как отпечаток пальца. Это означает, что строится не только образ ситуации и адекватная ей моторная схема, но что на основе этой схемы строится (а не просто повторяется) каждый живой моторный акт. Результаты и сам ход этой работы не вытекают однозначно из структуры внешнего стимульного подкрепления. В этом смысле объяснение происходящего движения по схеме «стимул-реакция» не соответствует существу дела. Исследователям предстоит еще разработать понятия, относящиеся к указанной выше работе по построению пространственного моторного действия.
Двигательное действие, рассматриваемое как необходимый компонент деятельности, должно обязательно соотноситься с ее когнитивными и личностными компонентами, такими, например, как образ и цель. При этом, как указывалось выше, и сама деятельность в целом и все ее компоненты обязательно характеризуются предметно-смысловыми чертами и пространственно-временной определенностью. Истоки этого подхода восходят к именам И. М. Сеченова и Ч. Шеррингтона.
И. М. Сеченов неоднократно подчеркивал, что «чувствование повсюду имеет значение регулятора движения, другими словами, первое вызывает последнее и видоизменяет его по силе и направлению» [55, с. 236—237]. Интересно и то, что Сеченов не ограничивал задачу физиологии и психологии изучением отдельных движений, а говорил о необходимости изучения той области явлений, в которой «чувствование превращается в повод и цель, а движение — в действие». На современном этапе изучения рабочих движений, трудовых операций и действий, сложнейших форм исполнительной деятельности человека особенно важно отметить указанное Сеченовым направление поисков решения и поныне кардинальной для физиологии и психологии проблемы: каков механизм регуляции движений чувствованиями? Возможность такой регуляции обеспечена уже тем, что мышца, представляющая собой «двойственный орган, наш рабочий орган и вместе с тем исконный, первоначальный орган чувств, воспитавший в порядке своих свойств все другие органы чувств, окрашивает все наши представления об окружающем мире в образах движения» [53, с. 936]. Более того, Сеченов писал, что мышца дала нам наши представления о пространстве, времени, о числе, о счете и т. д. Все это может быть возможным только при условии, что 'сами движения и действия не являются лишь элементарными и утилитарными актами исполнения, а осуществляют также познавательные, когнитивные функции и функции экспрессивные. Последние отчетливо реализуются не только в движениях, но в позно-тонических компонентах действия, являющихся носителями его личностно-смыслового содержания.
Многие трудовые движения и действия настолько совершенны, координированы, выразительны и красивы, что они нередко включаются в театрализованные представления. Не лишена смысла высказываемая время от времени идея создания специальной хореографии трудовых процессов.
Функциональная двойственность мышцы, функциональная гетерогенность движений и действий обеспечивают не только потенциальную, но и актуальную целостность деятельности, возможности ее развития и совершенствования. Примечательно в этом смысле предположение Ч. Шеррингтона о том, «... что в осуществлении действий, направленных на окончательный, завершающий акт в процессе отбора открывается возможность элементам памяти (хотя и рудиментарной) и элементам предварения (хотя и незначительным) развиться в психическую способность к «развертыванию» настоящего назад, в прошлое, и вперед, в будущее, которая у высших животных является непременным признаком более высокого умственного развития» [60, с. 314]. Именно эта «психическая способность» и является регулятором исполнительных актов. И. М. Сеченов очень тонко понимал это, говоря, что чувствования, даваемые сознанию органами чувств, служат источниками движений не прямо, а через психику,— поскольку с сигналом связан определенный смысл.
Различие атомарно-рефлекторного и целостного подходов зафиксировано и в языке описания двигательного поведения. Для первого преимущественно использовались такие термины, как реактология, рефлексология, для второго — психомоторика, психонервная деятельность, психическая деятельность и т. п. Разумеется, само по себе использование терминов «рефлекс» или «реакция»не означает еще, что тот или иной автор является сторонником «атомарного» подхода. Именно в этих терминах первоначально закладывались основы структурного подхода к изучению движений и действий. Так, Ч. Шеррингтон, анализируя предваряющие и завершающие реакции, писал: «Нетрудно видеть, какие широкие возможности для приспособительных реакций представляет такое устройство, состоящее из целой цепи последовательных актов, каждый из которых изменяет влияние акта, ему предшествовавшего» [60, с. 312]. В этом отрывке отчетливо просматривается идея целостности приспособительной деятельности. Аналогичным образом И. П. Павлов, анализируя цепи двигательных рефлексов, пришел к идее динамического стереотипа как целостного образования.
С тех пор как IT. М. Сеченов и Ч. Шеррингтон психологизировали трактовку двигательного поведения, накоплены многочисленные данные о решающей роли сенсорных процессов в управлении человеческими движениями. Анализируя строение анатомического аппарата, обеспечивающего движения высших животных и человека, А. А. Ухтомский отмечает его своеобразие по сравнению с искусственными механическими устройствами, характеризующееся значительно большим количеством степеней свободы. Ни костно-мышечный аппарат в целом, ни какая-либо его часть не составляет готового механизма для выполнения какого-либо определенного целесообразного акта, а представляет собой лишь совокупность известных анатомических компонентов, необходимых для создания такового. Особенности строения опорно-двигательного аппарата обусловливают пластичность поведения высших животных и человека и вместе с тем делают задачу управления этим поведением необычайно сложной и трудной. Поскольку управление предполагает ограничение степеней свободы, а в самом устройстве исполнительных механизмов у живых организмов такого рода ограничения практически отсутствуют, функции регуляции выполняемых действий должны взять на себя центральные механизмы. Рассмотрим кратко эволюцию представлений и современные взгляды на механизмы управления движениями.
Первоначально предполагалось, что центральные механизмы могут выполнить эту функцию, используя жесткие шаблоны, которые заранее предопределяют характер и последовательность требуемых движений. Р. Вудвортс [80] для такого способа построения движений ввел термин «центральное», или «моторное», программирование. Он доказывал наличие моторных программ, изучая быстрые произвольные движения человека.
Анализ кинематических характеристик точных движений руки привел его к заключению, что существует фаза движения, независимая от зрительной обратной связи, фаза, определяемая первоначальной программой. Наряду с этой фазой существует и вторая фаза, совершаемая с учетом зрительной обратной связи и обеспечивающая точностные характеристики движения. Таким образом,
Вудвортс описал способы управления движением, получившие позже наименование управления по открытому и закрытому контурам регулирования. В настоящее время каждый из этих способов в значительной степени абсолютизирован и имеет своих сторонников. В пользу каждого из них накоплено значительное число экспериментальных данных, ведутся дискуссии между представителями теории открытого и закрытого контуров.
К. Лешли был, видимо, одним из первых, кто отчетливо сформулировал концепцию центральных моторных программ и экспериментально доказал, что выработка навыка представляет собой центрально-организованный процесс, в реализации которого про-приоцептивные механизмы могут не играть существенной роли. Доводы Лешли, относящиеся к тому, что заученный навык может быть выполнен различными моторными структурами, действительно подтверждают идею моторного программирования, но сейчас практически не используются для доказательства слабой роли кинестетического контроля. Поиски доказательств в пользу открытого контура шли по пути изучения быстрых баллистических движений и блокирования каналов обратной связи, функционирующих при выполнении двигательных актов. Сторонники концепции моторного программирования и открытого контура оставляют за афферентацией лишь пусковые функции и модулирующие влияния. Однако до настоящего времени не получено решающих доказательств того, что произвольное движение человека может осуществляться только как результат центрально-организованных нервных команд, которые структурируются перед началом движения и позволяют осуществлять движение при отсутствии периферической обратной связи.
Главные недостатки систем открытого контура состоят в том, что они не обладают механизмами обратной связи для исправления ошибок, возникающих как вследствие свойств их входов, так и вследствие трансформации сигналов внутри системы. Этот тип систем обладает слабыми компенсаторными возможностями.
В рамках концепции открытого контура были детально разработаны представления о моторных программах. Понятие моторного программирования означает, что наборы моторных команд, как врожденных, так и заученных, хранятся в центральной нервной системе и могут вызываться и синтезироваться в желаемое движение. Моторная программа — это тщательно скоординированный порядок синергии (иногда их называют субрутинами, или субрежимами) , которые вместе охватывают требуемое движение и которые не зависят от обратной связи.
Независимо от отношения представителей концепции открытого контура к участию в регуляции движений обратной связи ими развиваются интересные представления об иерархии моторных программ, о существовании обобщенных программ, программ-схем, нижние звенья которых освобождают основную программу от обременительных вычислений. Важное значение имеют также предположения о связи программ с мотивами и целями, которые трансформируются в некоторое внутреннее представление субъекта о желаемом, требуемом движении или действии. Другими словами, моторные программы более тесно связываются с образом ситуации, с образом действия, не только с набором команд, хранящихся в нервной системе. Концепция открытого контура регулирования с минимальными оговорками и ограничениями применяется для объяснения механизмов движений глаз человека. В многочисленных исследованиях установлена почти однозначная зависимость между скоростью скачка на начальном этапе движения и конечной амплитудой скачка. Это означает, что уже до начала движения запрограммирована скорость саккады. На основании электрофизиологических исследований сделан вывод о том, что управление саккадическими движениями в одном фиксированном направлении сводится к определению временного отрезка, в течение которого прилагается постоянная сила, сокращающая прямые мышцы глаза.
Зачатки противоположных идей относительно кольцевого или замкнутого (закрытого) контура регуляции движений мы находим у В. Джемса [70], Ч. Шеррингтона [60] и др.
Джемс предположил, что периферическая обратная связь от одной части движения вызывает к действию следующую, и выдвинул гипотезу «цепных рефлексов», против которой позже выступил Лешли. В соответствии с теорией закрытого контура предполагается, что ответ не просто запускается рецепторикой, но и управляется ею.
Управление движением по «закрытому» контуру предполагает передачу с помощью обратных связей информации о соответствии движения требуемой цели и выработку на основе этого новых управляющих команд. Обратная связь выполняет две функции: с ее помощью определяются пространственные характеристики цели, необходимые для составления программы баллистического движения, а также осуществляется соотнесение результатов выполнения этих программ с истинным положением цели, служащее для уточнения программ последующих движений. Наиболее полная аргументация того, что жесткое программирование не может обеспечить целесообразный эффект движения, дана Н. А. Берн штейном.
Теория Н. А. Бернштейна охватывает широкий класс функционально-различных движений и представляет собой общую теорию поуровневого управления и построения движений человека. Эта теория включает в себя три фундаментальных принципа: центрального программирования, сенсорных коррекций и уровневой организации движений. Принцип координирования движений изложен им в безупречной с точки зрения современной теории автоматического регулирования форме: «... как только орган, находящийся под действием внешних и реактивных сил, плюс еще какая-то добавка внутренних, мышечных сил, отклонится в своем результирующем движении от того, что входит в намерения центральной нервной системы, эта последняя получит исчерпывающую сигнализацию об этом отклонении, достаточную для того, чтобы внести в эффекторный процесс собственные адекватные поправки. Весь изложенный принцип координирования заслуживает поэтому названия принципа сенсорных коррекций» [6, с. 28].
Н. А. Бернштейн долгое время решительно отвергал всякую возможность управления движением по разомкнутой схеме. Однако позже он отошел от такой крайней точки зрения и допустил возможность того, что в некоторых элементарных процессах дуга не замыкается в рефлекторное кольцо либо из-за кратковременности акта, либо вследствие его крайней элементарности.
Сенсорные коррекции осуществляются в общем случае всеми имеющимися в распоряжении организма рецепторными аппаратами. В частных случаях некоторые из обратных связей могут не участвовать в управлении движением. Первичные сигналы рецепторов предварительно подвергаются сложной обработке и «перешифровке», необходимой, например, для того, чтобы их можно было сличить с проектом движения, построенным на языке пространственно-кинематических представлений. Полученные в результате обработки «синтезы», составленные из сигналов всех видов обратных связей, участвующих в управлении данным движением, служат для сенсорных коррекций.
Понятие о сенсорном синтезе играет в модели Бернштейна фундаментальную роль. Состав образующих его афферентаций, т. е. обратных связей, и принцип их объединения служат главным критерием, отличающим один уровень построения движения от другого.
Каждая двигательная задача находит себе в зависимости от своего содержания и смысловой структуры тот или иной ведущий уровень. Уровни различаются между собой не только видом сенсорного синтеза, но и анатомическим субстратом, т. е. совокупностью органов нервной системы, без которых осуществление функции этого уровня невозможно.
В зависимости от цели и смыслового содержания двигательного акта один из уровней берет на себя роль ведущего, координирующего действия нижележащих фоновых уровней. Во всяком движении осознается только ведущий уровень. Выработка двигательного навыка — это процесс формирования в ходе обучения и тренировки уровневого состава движения, выделения ведущего уровня и срабатывания между собой всех вовлеченных в управление уровней. Необходимым условием успешного изучения двигательных актов является создание адекватного метода, позволяющего регистрировать и анализировать пространственно-временную развертку движения, весь ход двигательного акта «по всему моторному аппарату тела». В исследованиях исполнительной деятельности, направленных на выявление объективных индикаторов процесса формирования сенсомоторного образа пространства и структурыдействия, использовался микроструктурный метод анализа, суть которого состоит в выделении быстротекущих компонентов целостных психических актов и в анализе их взаимоотношения. Использование этого метода при исследовании произвольных пространственных действий позволило вскрыть структуру пространственного действия; проследить динамику ее становления и развития в различных условиях протекания действий; выделить ряд компонентов-стадий: формирования программы, реализации, контроля и коррекций, составляющих структуру действия, проследить динамику их развития, соотношения их на разных этапах освоения действия, а также изменения, происходящие внутри выделенных компонентов целостного действия. (Описание методики исследования см. в главе 3).
Экспериментальная ситуация предусматривала исследование формирования инструментального пространственного действия в различных условиях. В стабильных условиях маршруты требуемого движения были одинаковой величины и сложности. В динамических условиях маршруты отличались числом опорных элементов и числом пространственных составляющих движения. В условиях инверсии вводилось рассогласование (полное или частичное) между перцептивным и моторным полями. Инверсия вводилась после выработки навыка в условиях нормы.
В результате исследования было обнаружено, что в процессе формирования навыка (стабильные условия, норма) наблюдается сложная динамика во взаимоотношениях между отдельными стадиями целостного действия. Во-первых, в процессе освоения пpoстранственного действия наблюдается уменьшение времени каждой выделенной стадии; во-вторых, сокращение времени в каждой стадии происходит неравномерно, в-третьих, по мере тренировки происходит перераспределение времени между выделенными стадиями. Неравномерность темпа сокращения времени в выделенных стадиях свидетельствует о том, что все компоненты целостного действия совершенствуются неодинаково. В исследовании обнаружена последовательность формирования компонентов пространственного действия. Быстрее всего складывается стадия формирования моторных программ, за ней следует стадия контроля и коррекций, обе они формируются на фоне постепенного уменьшения времени, которое занимает стадия реализации моторных программ. Лишь после того как оба когнитивных компонента сформировались, видимо, возможно, последнее сокращение времени выполнения действия в целом. И это сокращение происходит за счет его исполнительной части. Перераспределение времени между стадиями внутри целостного действия на разных этапах формирования свидетельствует о том, что каждое новое упражнение — это новый процесс решения задачи, процесс изменения и совершенствования средств и способов ее решения.
При введении инверсии как средства разрушения сформированного пространственного действия было показано, что субъективно процесс формирования навыка в условиях инверсии переживается как значительно более трудный в сравнении с нормой. Формирование навыка в любом виде инверсии (полной или частичной) облегчает усвоение любого другого вида инверсии. Переход oт нормы к любому виду инверсии происходит с большими трудностями и требует большего времени, чем обратный переход. Сопоставление хода формирования совместимого и инвертированного инструментального пространственного действия показывает, что при переходе к работе в условиях инверсии наблюдаются эффекты переноса и интерференции (рис. 10).
В ходе перестройки навыка наблюдается различная динамика поведения функциональных компонентов, анализ которой позволяет заключить, что более быстрое по сравнению с нормой формирование инвертированного навыка возможно за счет переноса фазических, скоростных черт пространственного действия.
Стадия реализации почти полностью сохранила свои характеристики. Инверсия перцептивного и моторного полей незначительно отразилась на скоростных характеристиках фазических элементов действия. В случае когнитивных компонентов мы имеем дело не с переносом, а с интерференцией образа пространства, построенного в условиях нормы, и образа, который еще только строится в условиях инверсии. Это сказалось на характере когнитивных элементов. Более того, именно это же сказалось и на характеристиках стадий реализации на начальных этапах построения нового действия в новых условиях. Фазическая часть действия вновь взяла на себя когнитивные функции. При помощи движения руки испытуемые прощупывают новое пространство и находят признаки этого пространства. Когда построен новый сенсомоторный образ пространства, стадия реализации освобождается от когнитивных функций и начинает работать, как при совместимом пространственном действии, но теперь она реализует другие программы. Когнитивные компоненты продолжают совершенствоваться уже без видимого участия стадии реализации. Таким образом, явления переноса и интерференции имеют разную природу. Перенос происходит за счет исполнительной части действия, а интерференция — за счет когнитивных компонентов, однако явления эти не взаимоисключающие, они взаимодействуют в каждом пространственном действии.
Динамические условия предъявления информации сказались в основном на характеристиках когнитивных компонентов исследуемого процесса аналогично изменениям, зарегистрированным при введении инверсии. Особенно резко меняющиеся условия предъявления информации сказались на характеристиках стадии контроля и коррекций, время функционирования которой в 2— 3 раза превышает время, необходимое для контролирования в стабильных условиях. Это связано с тем, что в условиях неопределенности на стадию контроля и коррекций ложится двойная нагрузка: не только проконтролировать каждое дискретное действие, но и, что особенно существенно, соотнести условия предъявления информации с совершаемым действием. Иначе говоря, в функции контроля входит не только проверка результата действия, но и контроль за адекватностью выбранной программы предстоящего действия. Результаты исследования дали новый материал для изучения процесса формирования сенсомоторного образа рабочего пространства, строящегося на основе активных действий, когнитивный компонент которых является наиболее весомым на начальном этапе формирования нового действия. На основании данных о показателе когнитивности, характеризующем динамику временных отношений когнитивных и исполнительных компонентов и выражающемся через отношение суммы времени когнитивных компонентов к исполнительному, явствует, что по мере овладения навыком удельный вес когнитивных компонентов в целостном действии уменьшается. Когда построен образ сенсомоторного пространства, функция когнитивных компонентов сужается до программирования осуществляемого действия, что, естественно, сказывается на уменьшении показателя когнитивности. По сравнению с динамичными условиями в стабильных условиях предъявления информации уменьшение значений показателя когнитивности выражено за счет того, что в статике функция контроля в большей степени редуцирована.
На начальных этапах формирования нового действия, в каких бы условиях оно ни протекало, границы между стадиями нечеткие. Разброс между составляющими X, Y, Z внутри каждой стадии настолько велик (в отдельных случаях до секунды), что создается впечатление как бы вхождения одной стадии в другую. Это положение вполне соответствует тезису, сформулированному в контексте системно-структурных исследований, согласно которому менее развитая структура характеризуется меньшей дифференцированностью ее компонентов. Сказанное позволяет сделать два предположения: первое — на начальных этапах обучения возможны параллельное выполнение программы и ее реализация, а также peализация и контролирование; второе, вытекающее из первого, состоит в том, что на начальных этапах формирования навыка выполнение программы, ее реализация и контроль идут отдельно по составляющим движения. Иными словами, происходит последовательное планирование движения по каждой координате. Аналогичным образом последовательно осуществляются реализация и контролирование. Освоенное действие характеризуется значительным уменьшением разброса, а так как разброс характеризует качество действия (его пространственность),то на конечных этапах обучения сформированное действие приобретает черты более четкой функциональной структуры. И если на начальных этапах обучения функциональная структура действия по показателю пространственности сопоставима для различных условий протекания действия, то в конце обучения оказываются сопоставимы действия, формируемые в динамических условиях и в условиях инверсии, которые по значениям показателя разброса в 2— 3 раза превосходят значения этого показателя в условиях нормы. Следовательно, введение инверсии или неопределенности неизменно вызывает ухудшение качества действия, выражающееся в увеличении значений показателя разброса. Иначе говоря, качество действия чрезвычайно чувствительно к различным изменениям, вносимым в условия протекания действия.
Знание функциональной структуры действия, исследование динамики ее формирования и становления, установление взаимосвязей и взаимоотношений между компонентами исследуемого объекта открывают возможности контроля за процессом формирования и оптимизации движений и действий.
Изменение удельного веса компонентов в структуре действия как в процессе его формирования, так и под влиянием тех или иных изменений, внесенных в условия его протекания, свидетельствует о том, что превалирование того или иного типа регулирования двигательными актами зависит в основном от условий, в ко-
торых действие протекает, и от степени освоенности, обученности. На рис. 11 представлены удельные веса компонентов целостного действия в различных условиях его протекания и на разных этапах его формирования.
Соотношение компонентов функциональной структуры целостного действия в начале его формирования сходно независимо от того, в каких условиях протекает действие. В конце формирования сходное соотношение компонентов в структуре действия отмечается у действий, формируемых в динамических и инвертированных условиях; действие, формируемое в условиях нормы, имеет совершенно отличную от них структуру. Ситуация инверсии и динамики и ситуация нормы могут быть сопоставлены в терминах открытого и закрытого контура управления. В условиях нормы после длительной тренировки у испытуемых формировались симультанный образ ситуации и программа, организующая моторный ответ, т. е. значительная часть действия осуществлялась как бы по открытому контуру, что подтверждается значительным удельным весом стадии формирования программ и сравнительно небольшим весом стадии контроля и коррекций. В ситуации инверсии и в динамических условиях предъявления информации в течение проведенных экспериментальных серий сохранилась регуляция по принципу замкнутого контура, о чем свидетельствует удельный вес стадии контроля и коррекций, составляющей примерно 50% от целостного действия.
К настоящему времени предложено большое число разнообразных вариантов теорий закрытого контура регулирования, описывающих более или менее сложные акты человеческого поведения и деятельности. Эти теории относятся к таким процессам, как дискретные и непрерывные двигательные процессы, перцептивно-моторные навыки, речевое поведение и т. д. Общие черты этих теорий состоят в том, что закрытый контур предполагает знание субъектом хода осуществления движения. Это знание получается посредством обратной связи от движения и направляется на управление этим движением. Закрытый контур основывается на контроле за информацией от элементов системы, «подсчете» и учете ошибок, указывающих на направление или степень отклонения выхода системы за пределы заданного, исправлении этих ошибок. Основная функция систем закрытого контура состоит в минимизации этих ошибок.
Интересный вариант замкнутого контура управления движениями при формировании двигательных навыков предложен Дж. Адамсом [63]. При разработке своей теории Адаме широко использовал представления об акцепторе действия П. К. Анохина, о задающем элементе и приборе сличения Н. А. Бернштейна и о нервной модели стимула Е. Н. Соколова.
Теория разработана для объяснения процесса научения простым дискретным движениям, выполняемым в умеренном, ненавязанном темпе, т. е. является теорией формирования двигательного навыка. Она относится в первую очередь к линейным перемещениям руки на заданное расстояние в условиях, когда испытуемый не видит отметку, обозначающую нужное конечное положение руки, а длина пути задается ему или в словесной форме, или он ее усваивает в ходе тренировок, перемещая руку до упора в ограничитель.
Согласно Адамсу, центральное место в замкнутом контуре занимают механизмы, с помощью которых информация, получаемая по каналам обратной связи, сравнивается с эталоном для обнаружения ошибок, т. е. в системе предполагается наличие эталонного механизма, в котором фиксировано заданное действие, каналов обратной связи, а также аппарата сравнения, выделения и исправления ошибок. Для формирования навыков первостепенное значение имеет знание о результатах каждого выполненного движения. Это знание используется человеком для того, чтобы перестроить движение и исключить или уменьшить ошибку в каждой после дующей пробе. Подобные последовательные коррекции в конце концов приводят к выработке правильного движения. Эталонный механизм называется перцептивным следом, который представляет собой хранящуюся в памяти информацию о выполненных ранее движениях.
Понятие перцептивного следа эквивалентно понятию нервной модели стимула [56]. Перцептивный след представляет собой механизм, который детерминирует амплитуду движения, а возможно и временную организацию движения. Источниками формирования перцептивного следа в общем случае служат все виды обратных связей: зрительная, слуховая, проприоцептивная, а также рецепторы прикосновения и давления. Прочность перцептивного следа возрастает с увеличением числа проб. При этом информация о ранних, малоточных попытках забывается и растет удельный вес последних проб, реализованных с большой точностью.
Однако научение движению не сводится к столь простой схеме, по которой достаточно, чтобы был выработан перцептивный след и чтобы стимулы текущей обратной связи оказались соответствующими ему. На начальной стадии научения решающее значение имеет осознанное и вербализованное знание результатов. Эта стадия названа вербально-двигательной. Она заканчивается тогда, когда в ряде реализаций получен удовлетворительный результат и значения ошибок малы. Перцептивный след, достигший определенного уровня совершенства, фиксируется. Дальнейшее научение может уже происходить без знания результатов. Их заменяет сравнение информации обратных связей с высокоточным и прочным перцептивным следом. Эта завершающая стадия названа двигательной.
Адамс приводит логические доказательства в пользу существования особого механизма, функция которого заключается в инициации и выборе движения, называемого следом в памяти. След в памяти действует в разомкнутой системе, управляя программнобез коррекции обратными связями движением на начальном участке. Действие следа в памяти и перцептивного следа не совпадает во времени. Вначале включается в управление след в памяти, а несколько позже, когда начинают поступать сигналы обратных связей, управление передается перцептивному следу. Иначе говоря, след в памяти представляет собой двигательную программу, которая лишь актуализирует необходимые для осуществления реакции механизмы и запускает их в ход, а не управляет реализацией более длинной последовательности, как это обычно предполагается в концепции открытого контура. Некоторые движения реализуются на основе только следа в памяти, если двигательная реакция может быть классифицирована как баллистическая. Такая реакция инициируется следом в памяти и завершается до того, как испытуемый окажется в состоянии отрегулировать ее в процессе осуществления, сопоставляя получаемую обратную связь с перцептивным следом.
Нужно сказать, что объяснение баллистических движений, осуществляемых за время 100—200 мс, представляет наибольшие трудности для концепции замкнутого контура, так как в этих случаях коррекция должна осуществляться до завершения движения. Для объяснения подобных случаев вводится предположение о том, что двигательный контроль планируется до начала движения. То, что человек может совершать движения, продолжительность которых не превышает 100 мс, использовалось в качестве наиболее сильного (правда, все же косвенного) аргумента в пользу концепции открытого контура. Однако современные исследования в области физиологии проприоцепции дали многочисленные факты, свидетельствующие о том, что проприоцептивная обратная связь может осуществляться за время, существенно меньшее, чем 100 мс. Корковые потенциалы от нервов, расположенных в языке и конечностях, регистрируются через 3—5 мс. Полный цикл от мышечных рецепторов глаза через мозг и обратно осуществляется за 10 мс. Кортикальный ответ на движение руки регистрируется через 10 мс, а полный интервал от поступления двигательного стимула (через кору) и до ответа ЭМГ составляет всего 30—40 мс. Таким образом, двигательная система обладает необходимыми «нейронными скоростями» для того, чтобы регуляция движений осуществлялась по замкнутому контуру и обратная связь использовалась не только на всех стадиях обучения, но и при реализации каждого отдельного двигательного акта [75].
Учитывая эти факты, нельзя оставлять без внимания и то немаловажное обстоятельство, что «нейронные скорости» и скорости человеческих действий не совпадают друг с другом. Поэтому сами по себе значения скорости проведения нервных импульсов могут рассматриваться как косвенные доказательства потенциальной возможности прохождения информации по каналам обратной связи. Прямые доказательства этого должны быть получены в психологическом, поведенческом эксперименте.
Концепция Дж. Адамса представляет собой заметный вклад в решение проблем построения и управления движениями. В то же время нельзя не отметить, что настойчивое отрицание Адамсом возможностей построения программ и участия их в регуляции движений даже в варианте обобщенных схем представляет собой шаг назад от теории построения движений, предложенной Н. А. Бернштейном.
В последние годы появляется все большее число работ, в которых преодолевается альтернатива между концепциями открытого и закрытого контуров и делаются попытки соединить сильные стороны обеих концепций: построение программы и коррекция движений по ходу их реализации с помощью каналов обратной связи. Выше отмечалось, что в теории Н. А. Бернштейна удачно сочетаются концепции открытого и закрытого контуров, т. е. он ввел в свою модель построения движений как программу, так и обратную связь. Аналогичная попытка соединения двух концепций, но с учетом последних достижений в теории и практике изучения движений была выполнена Р. Шмидтом, который, анализируя обе теории, пришел к заключению, что перед ними стоит ряд трудных проблем [75]. Первая проблема связана с хранением и вызовом моторных программ, число которых невозможно себе представить, если принять тезис: «одна моторная программа — одно движение». Теория замкнутого контура также не снимает проблемы хранения; более того, в этом случае должны храниться не только программы, но и эталоны точности, с которыми должно сравниваться каждое движение. Вторая проблема связана с возникновением, или формированием, новых движений. Теоретически проблема формулируется следующим образом: откуда берутся программы или эталоны точности, если исполнители могут продуцировать такие движения, которые никогда ранее точно так же не выполнялись. Наконец, третья проблема состоит в том, каким образом индивидуум приходит к обнаружению собственных двигательных ошибок и к повышению точности при последующих действиях. При этом остаются неясными механизмы обнаружения двух типов ошибок, имеющих различные источники: «шум» в сенсорной или двигательной системах либо внешнее окружение. Перечисленные трудности и побудили Р. Шмидта предложить компромиссный вариант — теорию схем, которая, по его замыслу, в значительной мере их устраняет. Он исходит из того, что в системе управления движениями широко используются оба механизма регулирования и поэтому не имеет смысла классифицировать системы на только открытые или замкнутые. Однако относительная роль каждого из них существенно различается в зависимости от типа и сложности движений, от момента времени выполнения движения и от исследуемого уровня системы. Например, компьютер, с одной стороны, можно рассматривать как систему открытого контура, поскольку он может работать, не принимая во внимание ошибки, которые могут быть в программе, но, с другой стороны, он будет системой замкнутого контура, поскольку программист может обнаружить ошибку после выполнения программы и внести изменения в последующую серию. Точно так же и система открытого контура может иметь петлю обратной связи, которая предупреждает программу, например, от деления на ноль, а если такая попытка предпринимается, то внутренняя петля обратной связи может обнаружить это и внести изменения в выполнение программы открытого контура.
Анализ многочисленных данных приводит к заключению, что в человеческом поведении нет моторных программ, продуцирующих движение без обратной связи. Моторная программа представляет двигательным системам все детали работы, необходимые для прохождения конечностью расстояния до определенной цели, а обратная связь необходима для достижения этой цели. Если же появляется необходимость изменить цель движения в связи с происшедшим изменением в окружающей среде, то программа продолжает выполняться по-прежнему в течение некоторого времени (около 150 мс), пока движение не перестроится на достижение новой цели. В этом случае механизмы обратной связи активно обеспечивают достаточное достижение в новых условиях «неверной» цели. Шмидт определяет моторную программу как набор заранее построенных моторных команд, которые после активации реализуются в движение, ориентированное на достижение заданной цели, причем эти движения не затрагиваются периферической обратной связью, сообщающей о необходимости изменения цели. Развивая теорию схем, призванную объединить концепции открытого и закрытого контура, Шмидт постулирует существование двух состояний моторной памяти: одно — для вызова, другое — для узнавания. Вызывающая память является структурой, ответственной за генерирование импульсов к мышцам, производящим движение (или выполняющим коррекцию), в то время как узнающая память представляет собой структур}, ответственную за оценку продуцируемой движением обратной связи, что позволяет вырабатывать информацию об ошибке движения.
В теории схем принимается также допущение о существовании «обобщенных» двигательных программ, создаваемых внутри центральной нервной системы и содержащих мышечные команды со всеми деталями, необходимыми для выполнения движения. Роль, выполняемая программой, варьирует в зависимости от продолжительности движения.
В случае быстрого движения (т. е. движения, время которого составляет менее 200 мс) двигательный акт выполняется под полным контролем вызывающей памяти, в которой программа заранее определяет все детали движения.
В случае более медленных движений движение производится с использованием сразу и вызывания и узнавания. Роль вызывающей памяти здесь заключается в производстве небольших уточняющих движений, а основным фактором, определяющим точность выполнения задания, является сравнение ожидаемой и действительной обратной связи. Следовательно, медленные движения находятся в зависимости от узнающей памяти, хотя субъект может производить корректирующие движения с использованием вызывающей памяти.
Теории открытого и закрытого контура, а также различные варианты их объединения представляют собой существенный вклад в понимание механизмов построения и управления человеческими движениями и действиями. В исследованиях, лежащих в основе указанных теорий, накоплен арсенал функциональных элементов, важных для понимания регуляции движений. На очереди решение более сложной исследовательской задачи — установление различных типов связей между этими элементами. Без решения этой задачи теории открытого и закрытого контура не могут претендовать на то, чтобы составить необходимую научную основу практики рационализации, организации и проектирования новых видов трудовой деятельности. Однако при всей оригинальности и обоснованности ряда важных положений они пока остаются общими конкурирующими теориями построения движений и нуждаются не только в согласовании, но и в развитии, детализации, экспериментальной проверке, а возможно и в корректировке отдельных положений. Опыт практической работы в эргономике свидетельствует о том, что переход от общей теории, развитой в физиологии, биомеханике или психологии, к решению практических задач оптимизации или проектирования деятельности и ее средств — дело далеко не простое.
Для эргономики недостаточно утверждения о том, что теоретические крайности сходятся и что в реальной деятельности имеется тесное взаимодействие программного и кольцевого управления . движениями и действиями человека. Эргономику интересуют конкретные пределы независимости или сходимости, взаимодействия между программным и кольцевым способом управления применительно к различным видам движения и конкретным условиям, в том числе и временным режимам их осуществления.
Живучесть оппозиции между теориями открытого и закрытого контура объясняется следующими обстоятельствами. В качестве предмета исследования брались слишком различные по своему биомеханическому рисунку и по своим задачам движения. Изучались естественные и орудийные, изолированные и цепные (серийные) , быстрые и медленные, врожденные и заученные, вызванные (реактивные) движения. Для их исследования использовались методы, имеющие различную разрешающую способность: от простого наблюдения до весьма совершенных средств регистрации временного и пространственного рисунка движений. Организация движений исследовалась на различных уровнях, и нередки случаи генерализации результатов, полученных на психофизиологических, нейропсихологических, биомеханических и психологических уровнях. Наконец, во многих исследованиях движение либо бралось как целое без достаточного расчленения на свои структурные компоненты, либо в качестве предмета исследования выступали отдельные элементы, изолированные от структуры движения в целом. Все это вызывало и вызывает большие трудности в сопоставлении результатов, полученных в различных исследованиях. Поэтому преодоление оппозиции между теориями открытого и закрытого контуров регулирования по-прежнему остается актуальной научной и практической задачей.
В этих теориях, равно как и в экспериментальных исследованиях, на которых они основывались, не уделялось достаточного внимания анализу предметного содержания деятельности. Да и сами исследуемые двигательные акты, как правило, были чрезвычайно элементарны и по своей сложности редко превосходили стандартные варианты стимульно-реактивных схем изучения движения. Средства регистрации двигательных актов предназначались преимущественно для фиксации физиологических процессов, происходящих при реализации движений.
Обращает на себя внимание и интерпретация полученного материала, которая ведется преимущественно в терминах теории автоматического регулирования, кибернетики. Даже сами наименования — теория открытого, теория закрытого контура — свидетельствуют о влиянии идей и методов кибернетики. В этом влиянии, разумеется, нет ничего предосудительного, и некоторые полезные аналогии с техническими системами и управлением исполнительными действиями человека действительно помогли прояснить многие проблемы и привели к постановке новых проблем. Н. Е. Введенский когда-то писал: «К сожалению, построения живого мира настолько сложны и оригинальны, что смысл их выясняется обыкновенно лишь после того, как физики и техники придут другими путями к тем же результатам» [15, с. 574]. Но он же предупреждал о том, что, наблюдая за деятельностью какой-либо ткани или органа, «не следует упускать из виду, что каждый раз имеют дело с живыми единицами, поставленными в своей деятельности в условия, общие для всех живых организмов» [там же, с. 566]. Имеется большой соблазн по аналогии с техническими устройствами рассматривать тот или иной орган или функцию как механизм, предназначенный только для известной работы, т. е. вне контекста условий его жизнедеятельности. Однако всякая аналогия имеет свои границы и пределы. Аналогии между глазом и камерой-обскурой или фотоаппаратом давно изжили себя. Речь идет не о том, что теории открытого или закрытого контура уже постигла та же участь, а о том, чтобы выработать еще более широкий взгляд на человеческое движение и действие, включая их в контекст жизнедеятельности. В настоящее время созрели как теоретические, так и методические предпосылки для преодоления оппозиции между теориями открытого и закрытого контура. Теоретические предпосылки состоят в том, что во многих областях исследования психической деятельности успешно преодолевается
технологический, инженерный подход, в том числе и в его современном информационно-кибернетическом варианте. Методические предпосылки состоят в том, что благодаря использованию ЭВМ на линии эксперимента появились принципиально новые возможности регистрации и анализа движений.
В качестве примера приведем исследование [52], предметом которого был анализ соотношений когнитивных и исполнительных компонентов инструментального действия. Экспериментальная ситуация предусматривала быстрое и точное горизонтальное движение к цели, представляющей собой световой квадрат, равный по размеру управляемому квадрату и появляющийся справа и слева от стартовой позиции на горизонтальной оси телевизионного индикатора по программе от ЭВМ. Регистрировались временные и скоростные характеристики движения.
На рисунке 12 представлен образец записи перехода на цель, включающий в себя запись параметрического графика зависимости пути от времени, данные по скорости и ускорению совершаемого движения. Данный вид кривых S (t), V(t), A(t ) описывает движения, направленные на быстрое и точное совмещение управляемого пятна с целью. Скорость движения возрастает до середины пути, а затем начинает монотонно падать вплоть до начала корректирующих движений, подводящих управляемое пятно к цели. Изменение скорости движения, в свою очередь, вызвано тем, что усилие, прилагаемое для перемещения руки в пространстве и соответственно орудия, управляемого ею, изменяется во времени. Характер изменения этого усилия описывается изменением ускорения движения во времени A(t), где можно выделить ускоренную часть, соответствующую начальной части движения, когда скорость нарастает от 0 до максимума, и части движения, когда ускорение имеет отрицательный знак. Одновременно для каждой группы реализаций (в зависимости от амплитуды перемещения) был вычислен средний квадратичный разброс (а), т. е. определены участки максимального и минимального отклонения от идеальной кривой. Как показал анализ, максимальное отклонение на кривой (а) отмечено в середине пути там, где, как видно на кривой скорости, она уже достигла своего максимума. Иначе говоря, разброс минимален в начале и конце пути. Отсюда можно предположить. что движения в самом начале своего пути, соответствующие по времени фазе >нарастания ускорения и характеризующиеся минимальным разбросом (а), совершаются по четко отработанной программе для данной группы движений.
Эти данные согласуются с данными представителей программного или открытого типа управления движениями, постулирующих наличие набора моторных программ, которые могут синтезироваться в желаемое движение, охватить его целиком и которые не зависят от обратной афферентации. Результаты проведенного исследования свидетельствуют о наличии программного типа управления лишь для начальной части движения, составляющей для данной экспериментальной ситуации и данной группы движений 125—150 мс. Как было .показано, средний квадратичный разброс увеличивается, доходя до своего максимума на участке пути, соответствующему максимальному значению скорости, охватывающей на кривой S (t) интервал, равный 225—275 мс. Вследствие большого количества степеней свободы кинематических цепей человеческого тела, действия реактивных и внешних сил и других причин никакая, даже наиболее точно дозированная, система пусковых афферентных импульсов не может однозначно определить требуемое движение. Но движение все-таки совершается, и достаточно точно, и совершается оно с помощью внесения поправок по ходу выполнения движения, на основе эфферентной сигнализации, поступающей в процессе двигательного акта, путем «сенсорной коррекции». Однако одних импульсов, поступающих в нервную систему по ходу выполнения движения, еще недостаточно для управления действием, они должны сопоставляться с заданными, запрограммированными их значениями, что и дает возможность вносить поправки по ходу выполнения действия; на основе такого сличения и производится коррекция двигательного акта. Иначе говоря, имеются основания для объединения в одном двигательном акте двух типов управления: программного и на основе обратной афферентации, т. е. закрытого типа управления.
Сами представления о моторной программе и об обратной связи, являющиеся центральными в этих теориях, тоже нуждаются в объяснении, тем более, что они рассматриваются в этих теориях преимущественно со стороны их физиологических механизмов. А между тем современные исследования открывают в человеческом действии такие осложнения, вариации и направления, о которых не знают биомеханика и физиология, по крайней мере в их нынешнем состоянии. Главное осложнение состоит, видимо, в том, что как программа, так и контроль являются производными от образа, равно как и образ является производным от действия с предметом. Это не логический круг, поэтому разрывать его не нужно, но понять взаимоотношения между действием и образом необходимо; без этого невозможно решить проблему построения движений. Мы не случайно привели выше высказывание И. М. Сеченова о том, что чувствования служат источниками движений не прямо, а через психику, т. е. через образ, который сам является не менее динамичным, чем регулируемое им движение.
Понимание этого обстоятельства кардинально отличает теорию Н. А. Бернштейна от теорий открытого и закрытого контура. Рассматривая функции «задающего» элемента, он совершенно справедливо ставит вопрос о происхождении макропрограммы целевого действия и о связи ее с двигательной задачей. Последняя прямо или косвенно определяется ситуацией, сложившейся к данному моменту. В качестве определяющего фактора в возникновении и формировании макропрограммы двигательного акта в теории Бернштейна выступает образ или представление результата действия (конечного или поэтапного). «Привлечение мной для характеристики ведущего звена двигательного акта понятия образа или представления результата действия, принадлежащего к области психологии, с подчеркиванием того факта, что мы еще не умеем назвать в настоящий момент физиологический механизм, лежащий в его основе, никак не может означать непризнания существования этого последнего или выключения его из поля нашего внимания. В неразрывном психофизиологическом единстве процессов планирования и координации мы в состоянии в настоящее время нащупать и назвать определенным термином психологический аспект искомого ведущего фактора, в то время как физиология может быть в силу отставания ее на фронте изучения движений... еще не сумела вскрыть его физиологического аспекта. Однако ignoramus не значит ignorabimus» [7, с. 241]. Несмотря на столь отчетливую постановку проблемы регулирующих функций образа, нельзя не отметить, что эти функции рассматриваются Н. А. Бернштейном в самом общем виде. Вполне понятно, что именно в этом пункте он апеллирует к психологическому исследованию, которое не может обойти проблему формирования образа, выступающего в функции регулятора произвольного двигательного акта.
Важным этапом в исследовании произвольных движений и навыков было обращение к их ориентировочно-исследовательским, когнитивным компонентам. А. В. Запорожец показал, что в процессе ориентировочно-исследовательской деятельности складывается образ ситуации и тех действий, которые должны быть осуществлены. Особенно существенным является вклад ориентировки на начальных стадиях формирования произвольных движений [28]. Логика исследования привела А. В. Запорожца и его сотрудников к дифференциации ориентировочно-исследовательских, пробующих и собственно-исполнительных действий. Появились новые аргументы в пользу полифункциональности движений, которые могут выполнять как исполнительные, так и когнитивные функции, что привело к созданию теории перцептивных действий [29—32], были разработаны методы микроанализа когнитивных, в том числе и перцептивных процессов. При этом собственно-исполнительные действия анализировались в самом общем виде: оценивались лишь время их реализации и точность достижения цели.
Развитие теории и методического арсенала исследования перцептивных действий позволяет поставить задачу объединения целого ряда подходов к исследованию произвольных движений и навыков: теории построения и развития движений Н. А. Бернштейиа и А. В. Запорожца, теорий открытого и закрытого контура (вместе с различными вариантами их объединения) и теории перцептивных действий.
Первая попытка такого объединения была сделана на основе методов микроструктурного анализа исполнительной и познавательной деятельности.
В качестве существенного теоретического основания необходимости и полезности объединения названных концепций выдвигалось следующее. При построении движений происходит преодоление избыточных степеней свободы кинематических цепей человеческого тела. Не лишено оснований предположение, что имеется нечто общее между задачей построения движений и задачей построения зрительного образа. При построении образа также происходит преодоление избыточных и неадекватных вариантов отображения одного и того же объекта. С точки зрения регуляции и контроля произвольных движений, видимо, иначе и не может быть, поскольку зрительная система представляет собой существенную часть регулирующего звена двигательного акта. Поэтому в регулирующем звене (кстати, не обязательно связанном только со зрительной системой) должно быть не меньшее число степеней свободы, чем в исполнительном. В противном случае ряд степеней свободы исполнительного звена обязательно будет ускользать от регулирующего [36].
Именно поэтому исходя из принципа иннервации отдельных мышц нельзя объяснить целостный акт движения, нельзя говорить об однозначных связях между иннервационными импульсами и вызываемыми ими движениями. Близкие по смыслу идеи высказывает М. Турвей [78], считающий, что целесообразные движения регулируются не жестким (заранее готовым) паттерном, а образом действия, который сам является постоянно становящейся структурой. Мало вероятно, что для каждого способа выполнения движения существует готовый регуляторный паттерн (шаблон), тем более, что без предварительного научения возможно применение многих способов выполнения движений и действий. Движение реализуется путем подгонки друг к другу координируемых структур, которые являются относительно автономными с точки зрения организации движения. Собственно становление движения может быть понято как гетерархия, в высших областях которой имеется малое количество больших и сложных координируемых структур, а в низших — большое количество маленьких и простых структур. Турвей также считает, что центральное место в организации движения занимает образ предстоящего действия или представление о нем. В соответствии с таким пониманием процесса управления движением первоначальное представление о действии обязательно должно быть неопределенным в сравнении с его окончательным представлением в исполнительных командах для мышц. Проще говоря, «образ действия» не может и не должен быть конструктивным по отношению к конкретным деталям двигательного акта. В образ действия входят обобщенная оценка позы или схемы тела и выделенные перцептивные свойства, которые могут понадобиться для управления движением, представленные также в обобщенной форме. В разворачивающемся движении «образ действия» постепенно конкретизируется на последующих уровнях управления движением путем внесения в него детализированною
предметного содержания. Причем объединение координированных двигательных структур на каждом уровне происходит с помощью соответствующих, зрительно выделенных свойств внешней среды. Необходимо установить, каким образом и на основании чего формируется новая для данного индивида деятельность, какова ее функциональная структура и каковы компоненты, ее составляющие.
Для ответа на поставленные вопросы в экспериментальной ситуации была использована инверсия как средство разрушения сложившегося навыка, при введении которой перцептивные и моторные поля, каждое в отдельности, по сути дела не претерпевали никаких изменений. Нарушалось лишь соответствие между движением манипулятора и перемещением пятна на экране, иначе говоря, в инверсии нарушалось привычное соотношение перцептивного и моторного полей, что, естественно, вызывало разрушение сложившегося в условиях совместимости сенсомоторного образа пространства, т. е. средства стали неадекватны цели. Использование инверсии дало возможность более полно проследить этапы построения нового сенсомоторного образа рабочего пространства [18, 19].
Остановимся подробнее на строении фазической стадии пространственного действия, которая при введении инверсии из пространственной, единой и целенаправленной превратилась в набор большого количества разнонаправленных движений, перемежающихся либо полными остановками, либо значительными замедлениями. Каждая такая остановка говорит о том, что, сделав небольшое движение, испытуемый контролирует себя и намечает (программирует) свой дальнейший путь (рис. 13).
По сути дела, в структуре фазы при переходе на один элемент матрицы можно насчитать 3—8 полных циклов, каждый из которых состоит из своих собственных стадий программирования, реализации и контролирования. Иначе говоря, фазическая стадия целостного действия распалась на целый ряд разнонаправленных движений, а если учесть, что такие разнонаправленные с большой амплитудой движения, как бы пронизывающие оперативное пространство, зарегистрированы по каждой составляющей X, Y, Z пространственного действия, то станет ясно, насколько хаотично и беспорядочно выглядит это действие, которое по сути дела нельзя назвать действием, 'поскольку оно не целенаправлено и раздроблено. Его можно представить себе как искусственно соединенные цепи отдельных операций, каждая из которых имеет определенные направления, скорость и точку приложения. Отсюда совершенно ясно, что исконная функция движения — исполнительная — трансформируется на этом этапе овладения действием в функцию познавательную, исследовательскую, ориентирующую.
Таким образом, на основе активных действий, прощупывающих рабочее пространство во всех направлениях, функция которых не исполнительная, а исследовательская, начинает строиться новый сенсомоторный образ пространства. На первом этапе построения сенсомоторного образа формируется достаточно обобщенный образ ситуации в целом (рис. 14, кривая 1), который можно назвать этапом построения образа конкретной ситуации.
Следующий этап характеризуется большой временной протяженностью, занимая примерно несколько десятков реализаций.
Этот этап характеризуется прощупывающими движениями, идущими в направлении цели (рис. 14, кривая 2). Здесь уже нет разнонаправленных движений большой амплитуды. Движение от одного элемента матрицы к другому как бы делится на ряд последовательных операций, в каждой из которых отчетливо выделяются программирующая, реализующая и контролирующая стадии. Испытуемый как бы квантует воображаемую траекторию на мелкие отрезки, где нарастание скорости осуществления действия сменяется полными остановками. И квантов тем больше, чем менее освоен образ пространства. Необходимо отметить, что увеличение и падение скорости идет изолированно по каждой составляющей X, Y, Z движения. Это свидетельствует о том, что и на этом этапе освоения образа действие планируется не симультанно (пространственно) , а сукцессивно, изолированно по каждой координате. Более того, даже по отдельной координате оно не планируется полностью, а делится на кванты, где окончание предыдущего служит началом следующего.
Единое действие на этом этапе превращено в цепь последовательных, пробующих операций, идущих в направлении заданной цели и в конце концов достигающих ее. Подобные действия необходимы для подгонки сложившегося в общих чертах образа к конкретным двигательным задачам. Кроме того, видимо, они направлены на нахождение масштабного соответствия движения руки и местоположения элемента матрицы на экране.
Таким образом, второй этап овладения сенсомоторным пространством можно назвать этапом построения образа реальных исполнительных действий.
Следующий этап освоения образа сенсомоторного пространства может быть отнесен к образной, ориентирующей части действия только на самых начальных этапах своего формирования (рис. 14, кривая 3). Он характеризуется целенаправленными целостными действиями, функция которых в основном направлена на слияние уже построенного образа ситуации с образом реальных исполнительных действий. Функция эта является достаточно сложной, она требует не механического соединения, а качественного проникновения одного в другое и на основе этого построения симультанного, единого для данных условий сенсомоторного образа рабочего пространства. На его основе затем будет совершенствоваться уже собственно-исполнительная часть действия. Наличие такого единого ориентирующего образа открывает на этом этапе возможность для формирования и совершенствования программы действия, первые попытки построения которой уже наметились на этапе построения образа исполнительных действий.
Как возможно соединение регулирующего и исполнительного компонентов, каждый из которых обладает большим числом степеней свободы? Каков процесс ограничения числа степеней свободы в обоих звеньях двигательного акта? Эти вопросы возникают применительно к анализу сформировавшегося двигательного акта,но еще большую остроту они приобретают по отношению к процессу его формирования, по отношению к процессу овладения человеком как традиционными, так и новыми орудиями трудовой деятельности.
Исследование характеристик когнитивных компонентов, а также изучение процесса их формирования чрезвычайно важны, так как именно они связывают ориентирующие и исполнительные компоненты деятельности.
Сравнительный качественный и количественный анализ характеристик движений руки и глаз, полученный на разных стадиях овладения двигательными навыками, позволил выявить общие закономерности изменения исследуемых параметров [21]. По мере овладения двигательным навыком сокращается как общее время выполнения действия, так и длительность каждой выделенной стадии целостного действия, а также продолжительность периода глазо-двигательной активности. Время программирующей стадии действия пропорционально величине и сложности маршрута движения. При прохождении любого маршрута латентное время движения руки при переходе со стартовой позиции на первую опорную точку маршрута в несколько раз превышает время латентной стадии перехода между любыми другими пунктами данного маршрута, а разница тем больше, чем сложнее маршрут движения. Общая последовательность включения фаз движения руки и глаз всегда одинакова: после подачи сигнала зарегистрирован латентный период движения руки и глаз, сменяющийся периодом глазодвигательной активности, который тем больше, чем сложнее маршрут движения, затем начинается движение руки.
Наблюдающиеся в исследовании движения глаз были разделены на два функционально-различных класса. К первому классу относятся ориентировочно-исследовательские движения глаз, зарегистрированные только в латентной стадии движения руки. По мере выработки двигательного навыка наблюдается их постепенная редукция. Функция ориентировочно-исследовательских движений глаз состоит в формировании перцептивно-моторного образа пространства и планировании движения по всему маршруту. Ко второму классу относятся афферентирующие движения глаз, которые разделяются на два типа: прослеживающие движения руки скачки и опережающие движения руки скачки на цель. По мере выработки навыка прослеживающие скачки трансформируются в опережающие скачки. Функция афферентирующих движений состоит в сличении, коррекции и установлении масштабного соответствия заданной программы с реальной задачей.
На начальных этапах обучения у испытуемых, не владеющих навыком управления манипулятором, во время латентной стадии движения руки наблюдается большое число движений глаз, пересекающих тестовую матрицу. Эти движения относятся по преимуществу к поступательно-возвратному типу. На стадии реализации у этих испытуемых наблюдаются афферентные прослеживающие движения глаз, сопровождающие исполнительное действие руки (рис. 15).
По мере выработки навыка постепенно сокращается число поступательно-возвратных движений глаз. Они сохраняются лишь во время латентной стадии первого перехода, т. е. до начала движеения руки. Этому соответствует и сокращение латентных периодов движения руки каждого перехода на элемент матрицы; в меньшей степени сокращается первый латентный период. Посту-
пательно-возвратные скачки глаз трансформируются в поступательные, непосредственно предшествующие исполнительному действию. В свою очередь, при хорошо сформированном навыке афферентные прослеживающие движения глаз трансформируются в опережающие исполнительное действие движения. После опережающего скачка глаз фиксирует цель до окончания исполнительного действия руки, т. е. до совмещения управляемого пятна с соответствующим элементом матрицы (рис. 16).
В процессе обучения формируется новый образ пространства и перестраиваются или формируются заново соответствующие экспериментальной ситуации сенсомоторные координации; послетого как построен сенсомоторный образ, начинает активно формироваться программа исследуемого действия. Одним из показателей сформированности образа пространства и пространственного действия являются типы движений глаз, их количество, скорость движения руки и характер сенсомоторного взаимодействия.
Из изложенного выше следует, что для понимания процесса превращения человеческой руки в «орудие орудий» необходима
правильная теоретико-методологическая ориентация исследований исполнительной деятельности. Движения живого органа должны быть не только поняты, но и раскрыты как своего рода морфологические объекты, функциональные органы. Функциональным органом «является всякое временное сочетание сил, способное осуществить определенное достижение» [58, с. 71]. Аналогия между движениями живого органа и анатомическими органами или тканями убедительно обосновывалась двумя главнейшими его свойствами: «... во-первых, живое движение реагирует, во-вторых, оно закономерно эволюционирует и инволюционирует» [7, с. 178]. Подобная трактовка живого движения, выделение в качестве объекта исследования его «биодинамической ткани» задает новую стратегию его научного изучения и практической организации. В частности, она означает и то, что движение, моторная схема, навык не могут быть усвоены — они должны быть построены субъектом. «Упражнение — это повторение без повторений» [7]. Известно, что по мере овладения человеком определенной системой движений, последняя стереотипизуется. Но далее «... эта система, бывшая раньше чем-то внешним, являвшаяся объектом усвоения, превращается постепенно в своеобразный орган индивидуальности, в средство выражения и реализации отношения человека к действительности» [28, с. 394]. Современную эргономику все в большей мере интересует строение этого «органа индивидуальности», понимание и предвидение того, что может быть реализовано с его помощью.
§3. Функциональная структура познавательных действий
Трактовка психических процессов как специальных познавательных действий, формирующихся в онтогенетическом и функциональном развитии, с каждым годом получает все новые и новые экспериментальные подтверждения, находя практическое приложение в эргономике и инженерной психологии. Специализация и дифференциация трудовой деятельности привели к тому, что функции работающего нередко ограничиваются преимущественно сферой восприятия, в результате чего процессы обнаружения, идентификации, опознания, информационного поиска, перекодирования, кратковременного хранения и передачи информации, принятия решений выступают в трудовом процессе как самостоятельные целенаправленные действия. Естественно, что каждое такое действие завершается определенным исполнительным актом, т. е. входит в более широкую структуру деятельности, но поскольку эти исполнительные акты зачастую достаточно элементарны, профессиональное мастерство может определяться перцептивными или интеллектуальными компонентами. Поэтому эргономика все чаще обращается к общей, экспериментальной и даже генетической психологии, активно ставит и решает новые проблемы, которые входят в компетенцию этих разделов психологии.
Новые технические средства деятельности требуют формирования специальных перцептивных способностей, действий и навыков. Разнообразные виды деятельности оператора-наблюдателя, появившиеся в последние десятилетия, как нельзя лучше иллюстрируют известное положение о том, что органы чувств человека — это продукт всей прошедшей до сих пор всемирной истории. Изучение этих видов деятельности в реальных и в лабораторных условиях привело к накоплению огромного фактического материала, обобщенного в целом ряде теорий и моделей, существенным достоинством которых является преодоление натуралистических концепций человеческих способностей вообще и познавательных способностей в частности.
Функциональным, структурным и генетическим аспектам процессов восприятия, памяти и мышления посвящена обширная психологическая литература. В настоящем разделе мы ограничимся лишь общей характеристикой важнейших когнитивных процессов, играющих ведущую роль в трудовой деятельности, и приведем материалы, которые могут быть полезны при решении проективных задач эргономики. Специальное внимание при этом будет уделено огромным резервам, имеющимся в человеческом восприятии, памяти, резервам, рациональное использование которых может существенно облегчить решение сложных технических задач.
В предыдущем параграфе было показано значение образа ситуации и образа действий, которые должны быть выполнены в этой ситуации для формирования навыков. Исследования образов и соответственно особенностей их формирования становятся центральными и в когнитивной психологии, которая в работах своих наиболее дальновидных представителей [68, 71] успешно преодолевает стимульно-реактивные, бихевиористические схемы, долгое время использовавшиеся для анализа поведения и деятельности. Понятие образа начинает играть все более заметную роль в инженерно-психологических и эргономических исследованиях. Информационная модель реальной обстановки в системах «человек— машина» должна быть предварительно проанализирована оператором, он должен построить собственную образно-концептуальную модель ситуации, принять решение и лишь затем осуществить исполнительное действие. На этом примере особенно отчетливо выступает недостаточность объяснительных стимульно-реактивных схем. Между воздействием и ответным действием в деятельности оператора находится двойное уподобление реальности, или два образа, две модели реальности. Каждая из них требует от оператора специфических познавательных действий, осуществляющихся как во внешнем, так и во внутреннем плане.
Целесообразное действие уже не может осуществляться по схеме немедленного обслуживания; оно осуществляется по схемам отсроченного обслуживания или, точнее, активного действия, в интервале между воздействием и ответным действием имеется повторение и преобразование явлений в информационной модели, достигаемое техническими средствами, и повторение и преобразование явлений в образно-концептуальной модели, достигаемое психологическими средствами.
Информационные и образно-концептуальные модели выступают как искусственные образования, открывающие человеку пространство доступного для понимания и действия мира. Разумеется, образно-концептуальные и информационные модели нетождественны, но описание их в близких терминах существенно облегчает решение задачи синтеза систем «человек — машина».
Для понимания процессов формирования образно-концептуальных моделей, а также процессов преобразования, осуществляемых с целью информационной подготовки и принятия решения, полезно рассмотреть наиболее общие свойства зрительных образов.
Образы представляют собой субъективные феномены, возникающие в результате предметно-практической, сенсорно-перцептивной и мыслительной деятельности как при наличии адекватной сенсорной стимуляции, так и в ее отсутствие. Образ — это целостное, интегральное отражение действительности, в котором одновременно представлены основные перцептивные категории (пространство, движение, цвет, форма, фактура и т. д.), причем, как хорошо известно из психологии восприятия, воздействие этих категорий на наблюдателя не является независимым. Важнейшей функцией образа является регуляция исполнительных актов. Логично представить себе регулятор не менее реальным, чем исполнительный механизм, и обладающим такими же свойствами, как объект регулирования. В предыдущем параграфе приведены аргументы в пользу рассмотрения живого движения как особого функционального органа, обладающего по аналогии с морфологическими органами свойствами реактивности, чувствительности, подчиняющегося законам эволюции и инволюции.
Нетрудно обнаружить аналогичные свойства и у когнитивных процессов.
Восприятие, память, мышление также представляют собой действия (или системы действий), каждое из которых реактивно эволюционирует и инволюционирует [28, 30, 41]. Результаты этих действий фиксируются прежде всего в образах (двигательных, перцептивных, мнемических, мысленных), которые, в свою очередь, выполняют регулятивные функции по отношению к дальнейшему развертыванию когнитивных и исполнительных актов. Образы реальных предметов всегда локализуются нами во внешнем пространстве там, где находятся предметы восприятия или действия.
Это же относится и к визуализированным образам, представлениям, которые наблюдатель видит в отсутствие объекта наблюдения. Вне процесса объективации, экстериоризации не существует и образа как некоторой субъективной данности. Благодаря локализации образа во внешнем трехмерном пространстве (в том числе и в трансформированных субъектом его аналогах [73, 74]) возможно регулирование исполнительных действий, осуществляемых во внешнем плане. Другими словами, регуляция исполнительных актов возможна лишь через предметную среду, отображенную в объективированном образе.
В зрительном восприятии выделяют два типа структур: пространственную, связанную с локализацией в координатах трехмерного пространства окружающего мира, и структуру проксимальной стимуляции, соотносимую с анатомическими координатами сетчатки. В специальных исследованиях возможна демонстрация относительной независимости этих структур друг от друга, хотя в реальном акте восприятия они взаимосвязаны. Обе структуры характеризуются и определенными иконическими (картинными) свойствами [79]. Иконические свойства этих структур составляют чувственную ткань образа (и сознания), которая, как правило, слита с предметным содержанием воспринимаемой действительности [48], т. е. локализуется во внешнем трехмерном пространстве. Дальнейшее обсуждение свойств образа целесообразно проводить в терминах биодинамической и чувственной ткани, хотя их разделение не может быть абсолютным, поскольку и в биодинамической ткани движения присутствуют иконические, чувственные свойства (см. § 2). Пространственная структура образа складывается в результате предметных действий субъекта, благодаря преобразованию биодинамической ткани движения в чувственную ткань пространственного образа. Это относится не только к процессу формирования образа, но и к сформированному образу: ведь остановка может рассматриваться как накопленное движение, его симультанный слепок. В снятом виде биодинамическая ткань движения присутствует и в порожденном и в воплощенном образе.
По мере формирования пространственного образа он наполняется предметными свойствами, облекается чувственной тканью и совместно с ней локализуется во внешнем пространстве. Сказанное справедливо как по отношению к чувственной ткани, связанной по своему происхождению с биодинамической, так и по отношению к чувственной ткани, связанной с иконическими свойствами проксимальной стимуляции. Последняя также экстериоризуется и сливается с пространственной структурой образа. После такого слияния образ выступает как интегральное, неразложимое целое.
Следовательно, в сформировавшемся образе биодинамическая и чувственная ткань представляют как бы две стороны одного и того же целого. Более того, они становятся обратимыми. При формировании пространственного образа ведущую роль играет биодинамическая ткань движения, действия. В сформированном образе ведущее положение занимает чувственная ткань, в том числе и имеющая своим источником проксимальную ситуацию. При построении движения осуществляется обратный перевод, т.е. чувственная ткань образа трансформируется в биодинамическую ткань движения. Движение в конечном счете представляет собой как бы субстанцию, каркас образа. И если верно положение о том, что деятельность умирает в продукте, то точно так же должно быть справедливо положение о том, что образ умирает, воплощается в деятельности, чтобы возродиться в результате ее завершения. Именно поэтому образы обладают свойством открытости. Чувственная ткань пространственного образа, связанная по своему происхождению с активными движениями субъекта в окружающем мире, может выступать в качестве регулятора исполнительных действий. Осуществление последних вновь приводит к трансформации биодинамической ткани в чувственную, к расширению и фиксации в образе все новых и новых свойств предметной действительности. Однако сложившийся детальный образ окружения сплошь и рядом оказывается чрезмерно избыточным для решения утилитарных задач регуляции исполнительных актов, хотя он, разумеется, необходим для принятия решения о целесообразности того или иного действия. Средством преодоления избыточности при стереотипизации и стандартизации условий выполнения действия является трансформация пространственного образа, его биодинамической ткани в более или менее автоматизированную схему. В складывающихся в результате такой трансформации схемах, а затем и в символах усиливаются элементы абстрагирования и соответственно уменьшается удельный вес биодинамической и особенно чувственной ткани.
Сказанное выше позволяет прийти к заключению, что образы, равно как и движения, следует рассматривать как функциональные органы регуляции поведения. Подобная трактовка образа как органа индивидуальности вытекает из воззрений А. А. Ухтомского, рассматривавшего доминанту как особый функциональный орган. Он писал о ее внешнем и внутреннем выражении [58]. К внешнему выражению доминанты относится стационарно выполняемая работа или рабочая поза организма. К внутреннему выражению относится переживание доминанты в виде сокращенного символа («психологическое воспоминание»). На эту сторону дела в трудах А. А. Ухтомского обратил внимание Б. Г. Ананьев, который также подчеркивал, что целостный, или интегральный, образ может рассматриваться как своеобразный орган поведения. Подобная единая трактовка движений, образов, установок как функциональных органов индивидуальности облегчает выявление существующих между ними взаимоотношений.
Каждый человек имеет множество образов самых различных пространств: комнаты, улицы, города, любимой картины и т. д. Некоторые из нас свободно ориентируются в микроскопическом пространстве и даже в пространстве космоса, причем несомненна способность легко переходить от работы в одном пространстве к работе в другом пространстве. Образы внешнего окружения, как правило, включают в себя и «схему тела». Схема тела — это обобщенное представление человека о своем теле — его контуре и габаритах, его границах и о его ориентации « состоянии движения в окружающем пространстве. Ф. Д. Горбов [17] отмечал, что, непрерывно изменяя положение тела, человек одновременно создает и опробует постуральную модель, формирующую схему тела. Воспринимаемые границы схемы тела чрезвычайно подвижны. В схему тела включаются одежда и разнообразные орудия труда (перо, лопата, автомобиль, танкер и т. п.). Ярким примером пространственных свойств образов являются возникающие у ампутированных феномены движений фантомных конечностей, когда культя в действительности не двигается.
Приведенные призеры свидетельствуют о постепенном отодвигании чувствительности индивида во внешнее пространство, о построении индивидом все более адекватных и сложных пространственных образов и моделей реальности. Естественно, что в субъективных образах в зависимости от задач деятельности отражение физического пространства может трансформироваться. Оно может восприниматься в прямой и обратной перспективе, намеренно сжиматься или растягиваться, схематизироваться и пр. Описание субъективных образов, представлений и действий в терминах пространственно-временных свойств не более условно, чем описание ДНК в форме двойной спирали. Не случайно специалисты в области психологии труда и проективной эргономики давно работают в таких терминах и понятиях, как пространство моторного поля, пространственно-временные свойства движения и восприятия, наглядно-образные схемы, ориентирующие деятельность человека в рабочем пространстве. Используются и такие термины, как оперативная единица восприятия, образ-манипулятор, который несет в себе и отражение реальности, и ее понимание, и схему действия.
В зрительных образах отражается не только пространство, но и время. В симультанных картинах («остановленных мгновениях») присутствуют элементы настоящего, прошлого и будущего. Отражение времени в образах основано как на механизмах восприятия и экстраполяции движений, так и на механизмах, которые подобны полупрозрачной картотеке следов, зафиксированных в разные моменты времени. Это позволяет, с одной стороны, воспринимать мир стабильным, а с другой — учитывать в нем прошлые, текущие и предстоящие изменения. Следовательно, зрительные образы позволяют потенциально и актуально отражать действительность во всем богатстве как видимых, так и скрытых в определенный момент связей между предметами.
Отражение времени в образах представляет собой основу таких явлений, которые описываются терминами «предвидимое будущее» (Н. А. Бернштейн), «акцептор результатов действия» (П. К. Анохин).
Создание адекватного концептуального аппарата для описания структурных и функциональных характеристик пространственно-временных схем и конструкций, присутствующих в образах, оказывается чрезвычайно сложным делом, так как они, как правило, скрыты не только от внешнего наблюдения, но также и от интроспекции. В онтогенезе фундаментальные перцептивные категории, образующие основу предметных значений, практически осваиваются до развития процессов вербального общения, в рамках которого первоначально формируется символическое знание о мире. По мере становления той мощной системы произвольной регуляции деятельности, которой является у взрослого человека речь, создается впечатление, что процессы наглядно-образного отражения начинают играть подчиненную роль. Следует подчеркнуть, что и на этапе развитого речевого общения восприятие (и содержание образа) неидентично процессу отнесения к тем или иным условным категориям.
В информационном отношении образы представляют собой необычайно емкую форму репрезентации окружающей действительности. В них находит место информация о пространственно-временных, динамических, цветовых и фигуративных характеристиках предметов. Они многомерны, многокатегориальны, а также полимодальны. В образах отражаются не только фундаментальные перцептивные категории, но и взаимоотношения между ними как в рамках одной категории, так и интермодальные взаимоотношения. Высказываются предположения о том, что наглядные образы легко трансформируются в амодальные образы, в перцептивные или предметные понятия — комплексы («размытые понятия») и т. п. Другими словами, образы многослойны как генетически, так и функционально, что позволяет человеку как бы перемещаться в мир символических значений и концептов, рефлектировать по поводу верхних слоев построенного им образа мира, сознательно оперировать знаками, символами, словами. Что же касается фундаментальных перцептивных категорий, то, хотя они и служат ориентирами практической деятельности человека, они редко становятся предметом рефлексии. Конечно, человек продолжает эффективно использовать наглядно-чувственное, образное отражение предметной действительности, но преимущественно в скрытой, латентной форме.
Подобно тому как разные стороны сложных двигательных актов обеспечиваются координированной работой различных уровней построения движений, воспринимаемая пространственная локализация объектов и описание их формы, судя по результатам специальных исследований [11], представляют собой продукты переработки информации на различных уровнях построения образа. В восприятии, точно так же как и при регуляции движений, осознается в первую очередь предметное содержание, соответствующее смысловой стороне стоящей перед субъектом задачи. Фоновые координации, реализуемые на более низких уровнях, не представлены в фокальной области сознания, даже если речь идет о таких процессах, как отражение яркостных характеристик или движения предмета. Эта латентность восприятия, полезная для субъекта, не освобождает психологию от ее вполне сознательного учета, от задачи реконструкции этого удивительного мира психической реальности, от поиска и развития объективных и вместе с тем психологических методов его исследования.
Реконструкция фоновых координации, осуществляемых на нижних уровнях процесса формирования предметного образа, особенно актуальна, потому что объекты, ситуации, события представлены в информационных моделях в закодированном виде. Нередки случаи, когда наиболее информативные признаки отображаемых объектов кодируются распределением яркостей, движением, а пространственные характеристики объектов — буквенно-цифровой информацией или точками и линиями на плоскости средств отображения. Операторы в этих случаях должны восстанавливать ситуацию на основании заведомо бедной, а часто и искаженной входной информации. Другими словами, фоновые, неосознаваемые в естественных условиях уровни в деятельности оператора становятся предметом специальных перцептивных действий, на основе которых только и может сформироваться предметный образ отображаемой ситуации.
Исследование работы операторов показывает, что отнесение сведений, получаемых оператором, к реальным объектам, часто выполняется им как вполне сознательное действие, которое вызывает определенные трудности и нелегко поддается упражнению и автоматизации. Об этих трудностях писал М. Л. Галлай: «Я представляю себе, как метался взгляд летчика от прибора к прибору во время этого разворота: крен, перегрузка, скорость, подъем, курс, снова крен, снова скорость ... Инерция прижимает тело к креслу . . . Дрожит от напряжения корабль ... За покрытыми испариной стеклами кабины — сплошная молочная мгла, но летчик отработанным за годы полетов внутренним взором видит, какую хитрую, лежащую на самой грани возможного кривую описывает его машина». В этом описании обращает на себя внимание, во-первых, что пилот видит не столько приборы, сколько траекторию полета машины в пространстве, и, во-вторых, что это видение — результат работы внутреннего взора, отработанного за годы полетов. Этот пример не является исключительным. Имеется много профессий, основным содержанием которых является восприятие, опознание зрительных образов, их интерпретация и трансформация. Примером может служить дешифрирование аэрофотоснимков, снимков в трековых камерах и при рентгенодиагностике. Специфические проблемы возникают при организации деятельности человека в таких условиях, которые существенно изменяют характеристики сенсорных и перцептивных процессов, например, зрительное восприятие в безориентирном пространстве, восприятие в условиях невесомости или при наличии искажающих сред. Хотя это может звучать парадоксально, но восприятие, кажущееся таким естественным и непосредственным, оказывается серьезной и подчас очень тяжелой работой. Сложность многих профессий, связанных с процессами приема и переработки информации, состоит в том, чтобы обнаружить в запутанной и неясной картине ясные и отчетливые признаки определенных физических событий, т. е. построить образ этих событий, имеющий предметное значение, которое затем могло бы быть переведено в символическую, словесную форму.
Информационная емкость зрительных образов огромна. По сравнению со слуховыми и двигательными образами они характеризуются субъективной симультанностью, позволяющей мгновенно «схватывать» отношения между элементами реальной или представляемой ситуации. Симультанность характеризует не только восприятие реальных, но и отображенных, в том числе и закодированных объектов. Поэтому использование многомерных кодов (сочетаний цвета, формы, конфигурации и пр.) не вызывает увеличения времени восприятия по сравнению с одномерными кодами [42]. Образы обладают большей, чем слова, ассоциативной силой. Возможно поэтому образы прекрасно хранятся в памяти. После однократного предъявления нескольких тысяч картин наблюдатели способны правильно опознать около 90% [12].
Наряду с отражением реальности зрительные образы содержат интенциональные и аффективные компоненты, поэтому регуляция поведения и деятельности посредством образа замечательна тем, что она допускает определенную меру независимости деятельности от непосредственной внешней ситуации. Другими словами, образы субъективны и пристрастны. В образах присутствуют и оперативные компоненты, поскольку они по своему происхождению связаны с действием. Наличие оперативных компонентов позволяет образам трансформироваться в перцептивно-моторные схемы и выполнять функцию регуляции поведения с учетом внешних обстоятельств, а равно мотивационных и целевых аспектов деятельности.
Следующая группа свойств связана с их подвижностью и пластичностью. Эти свойства проявляются прежде всего в том, что в образном плане возможны быстрые переходы от обобщенной оценки ситуации к подробному анализу ее элементов. Они обеспечивают различного рода пространственные перемещения отраженных в образах объектов, их сдвиги, повороты, а также увеличение, уменьшение, перспективное искажение и нормализацию. Эта своеобразная манипулятивная способность зрительной системы [36] позволяет представить ситуацию как в прямой, так и в обратной перспективе. Манипуляции образами служат средствами решения задач опознавания, вносят определенный вклад в механизмы константности восприятия, а также являются важнейшими средствами продуктивного восприятия и визуального мышления [40, 64, 73]. Столкновение или сочетание различных образов может выполнять и смыслообразующие функции. Как хорошо известно, степень произвольности манипуляций образами может быть весьма различной. Продуктивные манипуляции образами наиболее эффективны, когда они происходят либо в отсутствие объекта наблюдения, либо при отстройке от внешней ситуации. Визуализация и манипуляция образами в плане наглядного представления интерферируют с перцептивной работой, направленной на окружающую действительность и, в меньшей степени интерферируют с процессами проговаривания, с внутренней речью. Это создает возможность для параллельной фиксации результатов, полученных при работе с образами в вербальных значениях. Неполные, незавершенные образы, в которых имеется элемент «недосказанности», нарушения равновесия, напряженности и т. п., в большей степени провоцируют манипулятивную способность зрительной системы, чем завершенные образы. Исследования манипулятивной способности зрительной системы приводят к заключению, что сформировавшийся образ представляет собой полифункциональный орган поведения. В нем фиксировано многоплановое отражение реальности, он является регулятором исполнительных актов, вместе с тем выступает в качестве «предмета» репродуктивной или продуктивной деятельности и, наконец, в качестве ее продукта. Конечно, образы, складывающиеся в результате предметно-практического действия, отличаются от образов, складывающихся в результате перцептивных действий. Это же справедливо и по отношению к образам, складывающимся в результате мнемической или умственной деятельности. Имеются различия и между образами, складывающимися в процессе ознакомления, и образами, регулирующими исполнительные действия. Хотя они и имеют самое близкое отношение друг к другу, однако их содержание, полнота, уровень обобщения и другие черты различны. Эти свойства образов зависят от решаемой субъектом задачи и от способов ее выполнения, т. е. от характера используемых субъектом перцептивных действий.
Развитие восприятия приводит к тому, что как образ собственного тела, так и образы объектов внешнего мира могут приобрести новое качество и стать частью языкового семантического пространства. Образы и процесс восприятия в целом становятся доступными рефлексивному анализу. Вместе с восприятием предмета происходит осознание его функций, благодаря чему восприятие становится обобщенным и категоризованным. Словесное обобщение позволяет привлечь к анализу сложные смысловые связи, отложившиеся в языке, и выделить те стороны воспринимаемого предмета, которые оставались бы недостаточно воспринятыми. Объективация образов позволяет «проигрывать» варианты поведения и деятельности на другом субстрате — субстрате отображения, модели, образа, прежде чем реализовать исполнительные действия на реальном субстрате.
Приведенная по необходимости краткая характеристика зрительных образов подтверждает высказанное ранее положение о том, что изучение процессов приема и переработки информации вне учета огромного информационного, когнитивного, творческого потенциала, содержащегося в предметно-практических и чувственно-предметных формах отражения действительности, может приводить к резкому занижению реальных возможностей человека по восприятию и обработке информации. Человек обладает поистине неисчерпаемыми резервами повышения «пропускной способности» восприятия. Все дело состоит в том, что эти резервы необходимо правильно использовать, т. е. создавать внешние средства деятельности, рассчитанные на сильные, а не на слабые стороны когнитивных процессов.
Процессы формирования, опознания и оперирования образами осуществляются при помощи специальных перцептивных действий.
Перцептивные действия. Согласно современным представлениям восприятие представляет собой совокупность процессов, обеспечивающих субъективное, пристрастное и вместе с тем адекватное отражение действительности. Адекватность образа дана не изначально, она достигается благодаря тому, что при формировании образа восприятия происходит уподобление воспринимающих систем свойствам воздействия. По своему месту в структуре деятельности процессы восприятия обычно являются действиями, за исключением тех случаев, когда создание адекватного или нового образа представляет собой самостоятельный мотив. Требования, предъявляемые к восприятию со стороны практической деятельности, называются перцептивными задачами. Воспринимать — это значит решать ту или иную перцептивную задачу, создавая адекватное отражение ситуации, поэтому восприятие представляет собой систему перцептивных действий. Перцептивное действие включает в себя различные операции и функциональные блоки. Перцептивное действие — это активный, динамический, регулируемый задачами деятельности процесс, обладающий механизмами обратной связи и предвосхищения, подчиняющийся особенностям обследуемого объекта. Активность восприятия состоит прежде всего в участии эффекторных компонентов, выступающих в форме движения рецепторных аппаратов и перемещений тела или его частей в пространстве. Эти движения делятся на два больших класса. В первый класс входят поисковые и установочные движения, с помощью которых осуществляются поиск заданного объекта, установка глаза в наиболее удобную для восприятия позицию и изменение этой позиции. К этому же классу относятся движения головы на внезапно раздавшийся звук, следящие движения глаза и пр. Подобные движения <не только создают наиболее благоприятные условия для восприятия объекта, но и участвуют в определении его пространственного положения.
Во второй класс входят собственно-гностические движения. При их непосредственном участии происходит оценка размеров, опознаются уже знакомые объекты, наконец, осуществляется сам процесс построения образа. В движениях руки, ощупывающей предмет, в движениях глаза, прослеживающих видимый контур, происходит непрерывное сравнение образа с оригиналом. Несоответствие их друг другу вызывает корректирование образа. Следовательно, роль моторики в восприятии не ограничивается созданием наилучших условий для работы афферентных систем и заключается в том, что движения сами участвуют в формировании субъективного образа объективного мира.
В целях более детального выяснения роли перцептивных действий в формировании образа целесообразно использовать ход рассуждений, в известной мере аналогичный тому, который был применен Н. А. Бернштейном для выяснения роли сенсорных коррекций в регуляции человеческих движений. Вследствие множества степеней свободы окружающих объектов по отношению к воспринимающему субъекту и бесконечного многообразия условий их появления они непрерывно меняют свое обличье, поворачиваются к нам различными сторонами. Иначе говоря, ни один сенсорный импульс, ни одно раздражение само по себе не может однозначно определить возникновение адекватного образа восприятия. Здесь необходима коррекция, исправляющая неизбежные ошибки и приводящая образ в соответствие с объектом.
Однако если такой образ будет материализован лишь во внутренних процессах организма (в состояниях рецептора и коркового конца анализатора), то сопоставление его с оригиналом окажется невозможным и, таким образом, требуемая коррекция не сможет осуществиться. Следовательно, нужна экстериоризация отражательного процесса, которая и происходит в виде перцептивных действий. Подобно тому как двигательное поведение субъекта может согласовываться с условиями задачи лишь благодаря сенсорной коррекции, адекватность восприятия обеспечивается в конечном счете коррекцией эффекторной.
Более широкий аспект этой проблемы состоит в том, что, вообще, физиологическая схема активности (безразлично идет ли речь о схеме рефлекторной дуги или рефлекторного кольца) не может «включить в себя объект» с его специфическими предметными свойствами. В пределах этой схемы объект может выступать лишь как внешний по отношению к данному процессу компонент, как раздражитель, подлежащий перешифровке в серию нервных импульсов. Для включения объекта в систему человеческой активности необходимо выйти за пределы ее физиологического описания и рассмотреть ее психологически как внешнюю целесообразную деятельность субъекта. Последняя включает в себя объект со всеми его специфическими особенностями как свой собственный органический компонент. Сказанное в полной мере и в первую очередь относится к орудиям труда, которые включаются в «схему тела» человека настолько, что чувствительность переносится на их границы.
Овладение системой перцептивных действий требует специального обучения и достаточно долгой практики. Существенно, что как сами перцептивные действия, так и критерии адекватности образа не остаются неизменными, а проходят значительный путь развития вместе с развитием самой деятельности.
Процесс формирования образа включает в себя целый ряд перцептивных действий, таких, как обнаружение, выделение адекватных задачам деятельности информативных признаков, обследование выделенных признаков и собственно построение образа. Перцептивные действия в своей развернутой внешней форме выступают лишь на ранних стадиях онтогенеза или функционального генеза при столкновении наблюдателя с новым для него перцептивным содержанием. В этих случаях наиболее отчетливо обнаруживаются их структура и роль в формировании образов восприятия. В дальнейшем они претерпевают ряд последовательных изменений и сокращений, пока не облекаются в форму мгновенного акта «усмотрения» объекта, который был описан представителями гештальтпсихологии и ошибочно принимался ими за исходную генетически первичную форму восприятия.
Важнейшим свойством восприятия является возможность перестройки перцептивных образов и моделей внешнего мира и возможность смены способов их построения и опознания. Один и тот же объект может служить прототипом многих перцептивных моделей. В процессе их формирования они уточняются, из объекта извлекаются инвариантные свойства и признаки, что приводит в конце концов к тому, что мир воспринимается таким, каким он существует на самом деле. Многообразие возможных перцептивных образов одной и той же ситуации или объекта объясняется тем, что внешние перцептивные действия, так же как и исполнительные действия, заключают в себе отражение двигательной задачи. Участие по-разному организованных движений и действий в процессах восприятия является основой и для объяснения субъективности и пристрастности восприятия. В ходе развития перцептивных действий формируются и развиваются и их когнитивные продукты, к числу которых относятся сенсорные и перцептивные эталоны, оперативные единицы восприятия, схемы, образы и т. д.. Важнейшую роль в восприятии играет формирование сенсорных эталонов, которые соответствуют не единичным свойствам окружающей действительности, а системам общественно выработанных сенсорных качеств [29]. К ним относятся общепризнанная шкала музыкальных звуков, «решетка фонем» родного языка, система геометрических форм и т. п. Если сенсорные эталоны представляют собой результат общественно-исторической деятельности человечества по выделению и созданию систем сенсорных качеств, необходимых для ориентировки в окружающем мире, то результат индивидуальной деятельности человека по усвоению сенсорных эталонов называется оперативными единицами восприятия. Оперативные единицы восприятия представляют собой компактные, семантические целостные образования, формирующиеся в результате перцептивного (в том числе и профессионального) обучения и создающие возможность практически одномоментного (симультанного, одноактного), целостного восприятия объектов и ситуаций независимо от числа содержащихся в них признаков. Конкретно, оперативные единицы восприятия выступают как содержание, выделяемое субъектом при выполнении той или иной перцептивной задачи. Развитие восприятия связано со сменой оперативных единиц. Как показывают исследования, эта смена выражается в преобразовании групп случайных, частных признаков в структурные, целостные признаки [32, 61]. Параллельно происходит изменение и совершенствование самих перцептивных действий.
Всякий раз, когда субъект сталкивается с новой для него действительностью или когда сформированный ранее образ оказывается неадекватным, процесс восприятия вновь превращается из симультанного в сукцессивный и совершается с помощью развернутых перцептивных действий. В развитых процессах восприятия имеются специальные опознавательные действия. С их помощью производится выделение информативного содержания, по которому наблюдатель может сличить предъявленный объект с уже сформированными оперативными единицами восприятия, опознать его и, наконец, отнести к какому-либо классу, т. е. категоризовать. Опознание требует значительно меньше времени, чем формирование образа. Для сличения и опознания достаточно выделить в объекте лишь отдельные характерные, информативные признаки. Это оказывается возможным потому, что в оперативных единицах восприятия аккумулирован прошлый опыт активной организации перцептивных действий, т. е. хорошо усвоенных «схем» обследования объекта. Эти схемы выступают как совокупность правил или обобщенных моторных программ, предназначенных для выделения существенных аспектов «типичного» в данном классе объектов. Указанные свойства оперативных единиц восприятия лежат в основе не только процессов обследования и опознания, но также служат основой порождения или визуализации образа, происходящих в отсутствие физического стимула. Подобная трактовка оперативных единиц восприятия близка к теории схем Ф. Бартлета [65] и к понятию «общей эфферентной готовности» индивида, которое является центральным в моторной теории зрительного восприятия, развиваемой Л. Фестингером и сотр. [69]. Согласно этой теории осознанное зрительное восприятие контура объекта определяется «эфферентной готовностью» индивида к выполнению определенных движений глаз, рук, головы и туловища в ответ на поступающую зрительную информацию. Под эфферентной готовностью понимается совокупность заранее программируемых эфферентных инструкций (моторных программ), которые активизуются зрительной информацией и находятся в состоянии готовности к мгновенному использованию.
Эфферентная готовность, актуализируемая стимулом, может относиться как к развертыванию перцептивных и опознавательных действий, так и к реализации приспособительных, исполнительных действий. В последнем случае эфферентная готовность ускоряет реализацию исполнительных действий и может служить источником ошибочных действий.
Возвращаясь к характеристике оперативных единиц восприятия, следует сказать, что в них отражен не только субъективный план восприятия, но и объективная характеристика условий задачи и возможные стратегии и способы ее решения. В них содержится отражательный компонент (чувственная ткань, перцептивное значение и т. п.) и динамический, оперативный компонент (эфферентная готовность к дальнейшему развертыванию перцептивных действий, направленных на более полное формирование образа ситуации, готовность к визуализации и даже к реализации исполнительных действий в хорошо знакомых, несложных ситуациях). Это означает, что в оперативных единицах восприятия может иметь место слияние перцептивных значений с эфферентной готовностью к актуализации обобщенных моторных программ.
Сенсорные эталоны, равно как и оперативные единицы восприятия, следует рассматривать как определенные инструменты, орудия осуществления перцептивных и опознавательных действий. Эталоны опосредуют эти действия подобно тому, как практическая (трудовая) деятельность опосредуется орудием, а мыслительная — словом.
Развитие восприятия приводит к созданию достаточно емкого алфавита оперативных единиц восприятия, т. е. определенной совокупности схем, перцептивных моделей окружения. Если на фазе построения образа и его трансформации в оперативные единицы восприятия происходит уподобление воспринимающих систем свойствам воздействия, то на фазе опознания или исполнительного действия на основе сложившихся оперативных единиц восприятия, характеристики и направленность процесса существенно изменяются. Эти изменения состоят в том, что субъект уже не только воссоздает с помощью перцептивных действий образ объекта, но и перекодирует, переводит получаемую информацию на язык оперативных единиц восприятия «ли перцептивных моделей, уже усвоенных. Иными словами, одновременно с уподоблением воспринимающих систем объекту происходит уподобление объекта субъекту, и только это двустороннее преобразование приводит к формированию полноценного, адекватного и вместе с тем субъективного образа объективной реальности.
Сказанное выше свидетельствует о том, что процессы восприятия активны, историчны и предметны. Последнее качество восприятия выступает в форме целостности, константности и осмысленности перцептивного образа. Восприятие целостно, поскольку оно отражает не изолированные качества раздражителей, а отношения между ними. С целостностью восприятия тесно связана его константность, под которой понимается относительная независимость воспринимаемых характеристик объекта от проекционных характеристик их отображений на рецепторные поверхности органов чувств. Источниками константности служат активные перцептивные действия. С помощью перцептивных операций из изменчивого потока стимуляции выделяется относительно инвариантная структура свойств предмета. Формирующиеся в самых разнообразных условиях оперативные единицы позволяют активно учитывать изменения проекционных свойств предмета и компенсировать их. В меру этого учета отражение предмета сохраняется неизменным как относительно движений объекта, так и относительно движений наблюдателя. Следовательно, изменения проекционных свойств предмета могут быть даже необходимыми для сохранения константности.
Как отмечалось, зрительная система обладает ярко выраженной манипулятивной способностью, которая, как и внешние перцептивные действия, является производной от практических, предметных действий. Одной из важнейших задач, решаемых этим перцептивным механизмом, является встречное изменение оперативных единиц восприятия, компенсирующее изменение стимуляции от объективно стабильного предмета. Способность манипулировать образом позволяет нам воспринимать стабильными и константными предметы, видимые под различным углом, с разного расстояния, а также в условиях вызванного движениями глаз относительного перемещения в поле зрения.
Манипуляции образом и оперативными единицами восприятия осуществляются при помощи особого класса перцептивных действий, которые получили название викарных. Благодаря викарным движениям глаз осуществляется анализ различных участков последовательного образа. Характерно, что викарные движения глаз наблюдаются после тахистоскопического предъявления изображений, слишком коротких для каких-либо поисковых движений глаз. Они наблюдаются и в условиях стабилизации изображения относительно сетчатки, во время сновидений, при представлении объекта в его отсутствие, при работе (с визуализированными образами и т. д. В последних случаях они выполняют функции анализа и трансформации зрительных образов. Викарные перцептивные действия замещают действия с реальными объектами, предваряют и проектируют их. Механизм викарных перцептивных действий, по-видимому, состоит в избирательном изменении чувствительности отдельных участков сетчатки, управляемом малоамплитудными движениями глаз. Эти движения совершаются в зоне 2—5° и имеют форму либо дрейфа, либо быстрых скачков. Этот механизм получил наименование механизма функциональной фовеа [36].
В зависимости от сложности задачи, от наличия у субъекта предварительного опыта, в том числе и соответствующих задаче оперативных единиц восприятия, ее решение может потребовать включения различных перцептивных действий: обнаружения, идентификации, опознавания, информационного поиска и т. д. В свою очередь, каждое из этих действий может выполняться в более или менее полном составе перцептивных операций. Так, например, зрительная оценка удаленности возможна за счет учета большого числа различных признаков расстояния до объекта (диспаратность, монокулярный параллакс движения, различия в угловых размерах близких и далеких объектов, высота, положение объекта в поле зрения и т. д.). В зависимости от условий наблюдения используются те или другие признаки, и, хотя конкретные перцептивные операции в каждом случае различны, результат — формирование представления об удаленности объекта — оказывается примерно одинаковым. То же самое можно сказать о восприятии формы, которое возможно как при помощи осязания, так и зрительно. Процессы опознания могут совершаться как одноактные симультанные действия, так и приобретать развернутую форму сличения отдельных признаков объекта с признаками эталона.
Даже процесс обнаружения, который, казалось, занимает исходное положение в системе перцептивных действий, может включать в себя развернутые процессы информационного поиска, идентификации, сличения и опознания. Другими словами, в каждом отдельном случае в зависимости от задачи, от предметного содержания деятельности и опыта наблюдателя происходит актуализация или формирование адекватной условиям деятельности функциональной структуры перцептивных действий и операций.
При решении многих научных и особенно прикладных задач нередко приходится сталкиваться с ситуациями, выходящими за пределы «разрешающей способности» анализа макроструктуры познавательных процессов. Это в полной мере относится и к восприятию, которое в повседневной жизни и профессиональной деятельности чаще всего выступает в качестве операции. При этом оно, конечно, не перестает быть сложным психическим процессом. Термины симультанность или одноактность — не более, чем эпитеты, маскирующие действительную сложность сформированных перцептивных действий. Поэтому для понимания и оптимизации перцептивных процессов необходимы средства микроструктурного анализа, необходимы своего рода зонды, с помощью которых оказалось бы возможным исследование хотя и кратковременных, но в высшей степени продуктивных психических процессов. Другими словами, для многих практических задач необходимы использование и разработка принципов анализа микроструктуры деятельности, которые позволили бы получить детальное описание перцептивных действий и операций и, что не менее важно, установить характер складывающихся между ними координации. Сказанное относится как к восприятию предметного окружения (включая анализ фаз восприятия в реальном масштабе времени — микрогенетический аспект изучения восприятия), так и к исследованию процессов приема, хранения, использования и воспроизведения графической, символической и других видов информации.
Рассмотрим вначале ситуацию микрогенеза, т. е. актуального становления зрительного образа объекта. В многочисленных традиционных исследованиях выявлялись три-четыре фазы этого процесса. На первой фазе ответы испытуемых характеризовались как: восприятие отсутствует, диффузный фон, смутное чувство наличия формы и т. п. На второй фазе: аморфная форма, наличие линий, отдельные детали (без общего адекватного опознания), упрощенная форма (по сравнению с предъявленной), ложные гипотезы, обобщенная форма (без деталей), дополнение воспринятого и т. п. На третьей фазе: узнавание, уверенное восприятие формы, ясный гештальт, оптимальное восприятие формы, идентификация, интерпретация и т. п.
Во всех этих случаях исследователи намеренно затрудняли узнавание снижением контраста, увеличением удаленности и эксцентричности положения объекта в поле зрения и т. д. В одном из исследований микрогенеза восприятия, выполненного в контексте микроструктурного анализа, была получена не только качественная, но и количественная характеристика процесса. Б. М. Величковскому удалось восстановить временной ход микрогенеза восприятия объекта в порядковой и даже в метрической форме. Он рассматривает три класса перцептивных задач. В первый класс входят процессы локализации объекта в трехмерном пространстве, а также оценка его размеров. На решение этих задач уходит примерно 50 мс. Решение задач второго класса связано с возможностью оценки временной последовательности событий, что требует при интра- и интермодальных сочетаниях стимулов около 100 мс. В этот класс входят процессы восприятия светлоты и параметров движения объектов. Эти виды восприятия инвариантны относительно пространственного положения, а видимая яркость — также и относительно длительности предъявления. Наконец, в третий класс перцептивных задач входят процессы восприятия формы объектов. В течение 100—150 мс с момента предъявления стимула объект выступает в восприятии как бесформенное и весьма лабильное образование. Требуется 200—300 мс, чтобы форма была воспринята как инвариантное целое, сохраняющее взаимное расположение своих частей во время разнообразных движений, наклонов, поворотов объектов в пространстве. Время восприятия ригидной формы зависит от скорости движения и от сложности формы, которая приблизительно пропорциональна числу элементов формы и случайности их расположения [11, 14].
В последних работах этого автора показано, что внутри пpoцессов восприятия фигуративных характеристик предметов отчетливо выделяются две самостоятельные стадии: на первой, более быстрой стадии происходит оценка общих очертаний, в частности, ориентации предмета в пространстве; на второй — оценка спецификации внутренних деталей объекта. Для завершения второй стадии необходимым оказывается участие фокального внимания. Зрительное восприятие, таким образом, движется от локализации квазипредметных областей в пространстве и времени к последующему описанию общих очертаний этих областей и, наконец, к отчетливому восприятию предмета во всем многообразии его деталей. Все это позволяет говорить о различных уровнях построения образа предмета. Процесс микрогенеза представляет собой последовательное восхождение с уровня на уровень, регулируемое перцептивной или любой другой задачей, а также временными и энергетическими условиями стимуляции [14]. По мере этого восхождения в восприятие вовлекаются все новые системы функциональных блоков, операций и перцептивных действий. Эти материалы дают основание вернуться к обсуждавшейся выше проблеме перцептивных и вербальных значений и категорий. Минимальная задержка вербальной категоризации при зрительном восприятии равна 250— 300 мс. За это время заканчивается перцептивная категоризация данных о локализации в трехмерном пространстве, параметрах движения, форме предмета. Легко видеть, что при целостном восприятии объектов в таком временном масштабе вербализация всей извлеченной перцептивной информации невозможна. Нужно учесть также, что каждая из перцептивных категорий имеет свою метрику. Очевидно, предел вербальной категоризации ставит наша кратковременная память. Если она и происходит, то лишь в отношении последней по времени (в шкале микрогенеза) выделенной перцептивной категории. Естественно, что при соответствующей установке наблюдатель может сделать любую из перечисленных категорий объектом целенаправленного перцептивного действия. Его результатом окажется вербальная категоризация. Наличие остальных также может быть зафиксировано в вербальной форме, но точность их абсолютной оценки будет существенно ниже по сравнению с категорией, выступающей предметом специального развернутого перцептивного действия.
Имеются данные, свидетельствующие о том, что последовательность фаз, реализующих микрогенез восприятия, может быть достаточно лабильной. В зависимости от задач и установок субъекта микрогенез может не проходить все стадии, а заканчиваться на любой из них. В зависимости от тех же обстоятельств и свойств стимуляции некоторые из стадий могут не участвовать в процессе восприятия. Так, например, на основании исследований микрогенеза выдвинута гипотеза о том, что аконстантное восприятие — это нормальное восприятие, в микроструктуре которого «свернуты» некоторые низкоуровневые операции оценки положения объекта в трехмерном пространстве. Незавершенностью микрогенеза объясняется и такой тип восприятия, который принято называть импрессионистическим. Этот способ видения и в повседневной жизни, и в профессиональной деятельности занимает значительно больший удельный вес, чем внимательное, детальное рассматривание. Мы часто смотрим широким полем зрения, «не позволяя» микрогенезу завершиться отчетливым восприятием отдельного предмета. Приспособительный смысл этого способа восприятия состоит в том, что перцептивные системы открыты для приема ожидаемой или срочной информации. Исследования микрогенеза восприятия проводятся в настоящее время в достаточно широких масштабах. На их основе возможна оптимизация процессов управления различными транспортными системами, когда человек имеет дело не только с отображенной информацией, но должен ориентироваться в реальном пространстве среди реальных движущихся объектов.
Исследователи приходят к заключению, что полнота микрогенеза определяется перцептивной или практической и т. п. задачей. Так, например, в процессе формирования образа объекта с целью его последующего узнавания или запоминания будут выделяться различные признаки. Если же необходимо принять решение о целесообразности того или иного действия, то выделяемые признаки могут оказаться совсем другими по сравнению с мнемическими задачами. Именно для принятия решения необходимо формирование целостного, предметного, константного и категориального образа объекта или ситуации. Но такой образ, будучи необходим для принятия решения, обладает весьма ограниченными возможностями регуляции предстоящего действия. Он должен быть преобразован и перестроен в интересах действия. Эта перестройка идет в направлении его декомпозиции и дезинтеграции, выделения в нем отдельных перцептивных категорий, таких, как пространство, движение, истинная (а не константная) величина, форма и пр. И каждая из этих категорий должна найти адекватное отражение в моторных программах. Вполне вероятно, что микрогенез перцептивных категорий, наблюдающийся в процессе формирования образа, его композиции отличается от порядка выделения перцептивных категорий, участвующих в построении действия. Не исключен и обратный микрогенез, или обратная развертка целостности, в процессе декомпозиции образа и формирования моторных программ.
Учет этой реальной сложности требует отказа от простой линейной цепочки: восприятие, решение, действие, контроль. В более широких структурах деятельности, включающих указанные компоненты, трудно однозначно локализовать тот или иной компонент. Для их описания необходимы новые экспериментальные и концептуальные средства анализа.
Микроструктурный анализ когнитивных процессов. Для того чтобы сделать более наглядной проблему исследования когнитивной деятельности методами микроструктурного анализа, начнем с описания реального случая, свидетелем которого был один из авторов. Однажды гроссмейстеру, участвовавшему в психологических опытах, предъявляли на 0,5 с сложную шахматную позицию для запоминания. Шахматист отказался воспроизвести позицию, говоря, что он ничего не мог запомнить, но при этом добавил, что позиция белых была слабее. В приведенном примере поражает, что испытуемый до расчлененного, детального восприятия, а тем более запоминания элементов сложной ситуации извлекает содержащийся в ней смысл и осуществляет интегральную (чаще всего безошибочную) оценку этой ситуации. Подобные кратковременные, продуктивные психические процессы, производящие в самонаблюдении впечатление абсолютной непосредственности, издавна привлекали к себе внимание ученых. Они получили название «бессознательных умозаключений», «созерцания сущностей», «чистой данности» и т. п. В настоящее время интерес к этим явлениям в значительной степени стимулируется инженерно-психологическими задачами исследования процессов приема и переработки информации, а особенно задачами исследования информационной подготовки и принятия решения. Выявление структуры кратковременных процессов поможет лучше проектировать внешние средства деятельности операторов, в частности информационные модели, а также более целенаправленно формировать внутренние средства деятельности.
Микроструктурный анализ познавательной и исполнительной деятельности представляет собой изучение кратковременных перцептивных мнемических и мыслительных процессов. С помощью метода микроструктурного анализа последние можно представить как морфологические объекты, имеющие развитую функциональную структуру, определенное предметное содержание и семантическую нагрузку.
Поскольку микроструктурный анализ предназначен для описания структуры познавательных и исполнительных действий, то его важнейшие задачи состоят в выделении сохраняющих свойства целого компонентов (единиц анализа) и установлении складывающихся между ними типов взаимоотношений или координации. Набор (алфавит) этих компонентов должен быть достаточно широк для того, чтобы охватить процесс в целом, кроме того, каждый из этих компонентов должен обладать не только качественной, но и количественной определенностью. Микроструктурный анализ оперирует понятиями операции и функционального блока. Последние представляют собой достаточно элементарные единицы преобразований входной информации. Каждый функциональный блок отличается от другого по ряду параметров, важнейшими из которых являются: место в структуре операции или действия, информационная емкость, время хранения (преобразования) информации, форма репрезентации в нем того или иного предметного содержания, тип преобразования информации и возможные связи с другими функциональными блоками.
Метод изучения микроструктуры основан на выделении, анализе и количественной оценке факторов, влияющих на время выполнения действий в различных экспериментальных условиях. Эти факторы включают в себя характеристики внешних и собственных средств деятельности, связанные с особенностями и предметным содержанием тестового материала, с прошлым опытом познавательных или практических действий. Наиболее распространенный методический прием микроструктурного анализа состоит в следующем. Время от начала предъявления тестового материала делится на ряд интервалов и предполагается, что в каждом таком интервале выполняются те или иные преобразования входной информации, осуществляемые определенным функциональным блоком или рядом блоков. Эта предварительная модель подвергается экспериментальному анализу, причем даже в случае использования одного и того же тестового материала (предусматривается варьирование условий его предъявления, типов инструкций и ответных действий испытуемых). Затем на основе анализа результатов строится более совершенная модель, состоящая из функциональных блоков, каждый из которых выполняет одну (иногда более) функцию по хранению, извлечению, преобразованию предъявленной информации. Эта гипотетическая модель, в свою очередь, подвергается затем детальной экспериментальной проверке и т. д. Естественно, что в таком исследовании отдельные функциональные блоки не могут выступить непосредственным объектом изучения. Им является целостное действие индивида. Однако вариации задач, тестового материала, его количества, темпа предъявления, типа ответных действий и т. д., основанные на современных методах планирования эксперимента, дают возможность выделения в этом действии отдельных операций и функциональных блоков. Микроструктурный анализ представляет собой разновидность уровневого анализа. Соответственно важнейшей его задачей является выяснение структуры превращенных форм внешней предметной деятельности, совершающихся во внутреннем плане и возникших во внутренней деятельности новообразований. Многочисленные исследования, ведущиеся в русле микроструктурного анализа, можно представить себе как некоторый прототип, пока еще, правда, достаточно несовершенный, проектирования отдельных функций операторской деятельности.
В настоящее время существует большое число моделей процессов приема и переработки информации, нередко называемых моделями кратковременной зрительной и слуховой памяти. С этим связано стойкое недоразумение, которое состоит в том, что методы микроструктурного якобы анализа применимы лишь к исследованию кратковременной памяти. На самом же деле, хотя они возникли первоначально в исследованиях кратковременной памяти, но затем стали применяться для изучения практически всех познавательных, а с недавнего времени и исполнительных процессов. На рисунке 17 представлена блок-схема потенциально возможных типов преобразования входной информации на участке от входа зрительной системы до речевого ответа. В зависимости от задач наблюдения и действия, от наличия сенсорных эталонов, оперативных единиц восприятия, гипотез, установок и целого ряда других факторов воспринимаемая информация может подвергаться различным преобразованиям. Иными словами, процесс обработки входной информации может прерваться в любом блоке, да и сами блоки могут участвовать в обработке в различном наборе и координации. Все это может служить одним из оснований для объяснения многообразных индивидуальных особенностей, которыми характеризуются человеческое восприятие, запоминание и мышление.
Сенсорная память. Этот блок также называют «сенсорным регистром», «очень короткой зрительной памятью» и т. п. Функция этого блока состоит в отражении и запечатлении объекта во всей полноте его признаков, доступных воспринимающей системе, т. е. находящихся в зоне ее разрешающей способности. Время хранения информации в сенсорной памяти невелико, так как она при работе зрительной системы в динамическом режиме (постоянная смена точек фиксации) все время должна освобождаться для -приема новой порции информации, и оценивается величиной порядка 100 мс
В сенсорной памяти фиксируется пространственная локализация объектов. Если она меняется, то информация поступает для анализа на более высокие уровни обработки. Данные об объеме и времени хранения информации в сенсорной памяти основаны на экспериментах, в которых испытуемые решали задачу идентификации двух последовательно предъявленных матриц, состоящих из случайно расположенных черных и белых ячеек. Матрица, содержащая 64 ячейки, предъявлялась на 1 с, за ней после переменного интервала следовала вторая и экспонировалась до тех пор, пока испытуемый не отвечал. Вторая матрица была либо идентична первой, либо отличалась тем, что содержала на одну черную ячейку больше или меньше. Ответы были быстрыми и точными, если интервал между матрицами не превышал 100 мс. При увеличении интервала точность ответов существенно снижалась [72].
Нужно обратить внимание на то, что процедура идентификации, осуществляющаяся на уровне сенсорного регистра, происходит как бы сама собой и не требует намеренного запоминания контрольного изображения, детального сличения его с тестовым. Использование механизма, лежащего в основе сенсорного регистра, позволяет существенно повысить производительность труда специалистов, занятых идентификацией различных изображений (рентгенограмм, аэрофотоснимков, микросхем и т. п.).
Сенсорная память, благодаря ее огромному объему, выполняет функции предафферентации и контроля за изменениями, происходящими в окружающей среде. Изменения, регистрируемые в сенсорной памяти, являются поводом для включения других уровней переработки информации, ответственных за обнаружение, поиск, опознание, а также другие формы переработки массивов «сырой» сенсорной информации.
И коническая память. Если сенсорная память хранит всю предъявленную информацию независимо от того, организована она или нет, то в иконической памяти происходят преобразование и хранение объектной информации в виде сенсорных и перцептивных эталонов, которые впоследствии могут быть перцептивно или вербально категоризованы. Объем хранимой в иконической памяти информации очень велик, он явно больше того объема, который может быть воспроизведен или использован для регуляции поведения и деятельности. Эта избыточность предполагает избирательность последующих этапов восприятия и памяти. По имеющимся опенкам в иконической памяти хранится до 12 символов в течение 800—1000 мс [76]. Относительно большая длительность хранения информации в иконической памяти имеет важное функциональное значение. Его первая функция состоит в сохранении зрительного «оригинала», с помощью которого возможен контроль за адекватностью преобразований, осуществляемых в других функциональных блоках. Вторая функция состоит в том, что длительное хранение обеспечивает связь ранее зафиксированных следов с последующими. В специальных исследованиях [16, 33] была показана доступность для анализа двух-трех зафиксированных следов (в пределах 1 с). Итак, в иконической памяти присутствуют как динамические (преобразования), так и консервативные (сохранение) компоненты. Сканирование. Информация, хранящаяся в иконической памяти, подвергается дальнейшей обработке. Важную роль в этом играет сканирующий механизм. Сканирование содержания иконической памяти происходит с постоянной скоростью, равной 10 мс на символ. Согласно экспериментальным данным наблюдатель может отыскивать заданный символ в меняющемся информационном поле со скоростью 120 символов в секунду [27, 77]. Следует отметить, однако, что этот режим восприятия представляет собой своеобразный вариант слепоты к миру, когда человек воспринимает лишь то, что он ожидает. Сканирующий механизм является эффект тивным средством преодоления излишней и избыточной информации, зафиксированной в иконической 'памяти. Он испытывает на себе влияние вышележащих уровней переработки информации, которые задают ему поисковые эталоны, и направление сканирования. В литературе обсуждается гипотеза, заменяющая механизм сканирования фильтрующим механизмом. В этом случае поисковые эталоны должны перемещаться на уровень сенсорной памяти.
Буферная память опознания. Название этого блока говорит о том, что он служит местом встречи информации, идущей из внешнего мира и поступающей из долговременной памяти. Блок опознания— это некоторая часть содержания долговременной памяти,. вынесенная ко входу в виде перцептивных гипотез, эталонов, оперативных единиц восприятия и памяти. Число этих гипотез может быть различным. Если оно, мало, то оперативные единицы восприятия могут перемещаться даже на уровни иконической и сенсорной памяти, подвергаясь при этом обратной трансформации на язык: этих блоков. Дать оценку числа гипотез, хранящихся в блоке опознания, весьма трудно. Число фамилий, параллельно разыскиваемых в тексте профессионалами по адресной классификации информации, может превышать 100. Для буквенной информации—не более 10—42. Бели число искомых букв больше, то начинает расти время реакции. Для картинной информации число перцептивных: гипотез, по-видимому, огромно, но хранятся ли они в буфере узнавания или в долговременной памяти — точно не установлено.. Важно, что картинные перцептивные эталоны обладают очень высокой доступностью. В блоке опознания происходят выделение информативных признаков в связи с выдвинутыми перцептивными гипотезами и сличение поступающей информации с актуализированными эталонами, образами.
Формирование программ моторных инструкций. Информация, оцененная как полезная, в блоке опознания должна быть приведена к виду, пригодному для ее использования. Как уже отмечалось, она может быть ассимилирована системой сенсорных или перцептивных эталонов, содержащихся в блоке опознания. Затем поступившая информация должна быть переведена или соотнесена с некоторыми моторными программами. Это необходимо для того, чтобы оказалась возможной ее экстериоризация либо в виде речевых сообщений, либо в виде каких-либо других ответных действий. В этом случае речь должна идти не о следах, не об эталонах и даже не об образах, а об эфферентной готовности, оперативных единицах восприятия, сенсомоторных схемах, эфферентных копиях, программах обследования или исполнения.
Нужно сказать, что в исследованиях кратковременной памяти пока не найдено сильных аргументов для разделения блока опознавания и блока формирования программ моторных инструкций. Некоторые авторы преобразования информации, доставляемой сканирующим механизмом, в программу моторных инструкций относят к функциям буферной памяти опознания. Работа блока повторения, собственно, и представляет собой выполнение одной из возможных программ, которые формируются в блоке узнавания. Скорость блока сканирования и блока опознания, включая формирование программ моторных инструкций, оценивается одной к той же величиной—10—15 мс на символ, «о не указано, является ли время работы блока опознания дополнительным или оно совпадает с работой блока сканирования. Во всяком случае, важно отметить, что скорость работы блока опознания больше, чем на порядок, превышает скорость работы блока повторения (15 мс для создания программы моторных инструкций в блоке опознания и 300— 500 мс для выполнения этой программы). Максимальная скорость работы блока повторения оценивается величиной 6 букв/с, хотя в экспериментах на запоминание более частой является скорость около 3 букв/с. По-видимому, оценки скорости формирования программ моторных инструкций являются чрезмерно завышенными. С такими оценками можно согласиться, если признать возможность существования двух типов программ моторных инструкций: потенциальных и реальных. Первые программы могут создаваться со скоростью, близкой к той, которую предположил Дж. Сперлинг, т. е. со скоростью 10—15 мс на символ. Реальные программы должны быть значительно более детализированы и соответственно скорость их создания должна быть существенно ниже. Если отвлечься от реальных программ моторных инструкций и принять оценки скорости создания потенциальных программ моторных инструкций, то возникает вопрос, для чего нужен такой запас прочности в работе первых блоков по сравнению с блоком повторения. Можно предположить, что в познавательной и исполнительной деятельности имеются такие ситуации, которые оправдывают огромную скорость работы блоков, близких ко входу зрительной системы.
По-видимому, эти ситуации более близки к естественным условиям деятельности человека, когда от него требуется не столько полное воспроизведение предъявленного материала, сколько узнавание его, оценка степени полезности и отбор небольшой части информации, релевантной задачам деятельности. Естественно думать, что в таких ситуациях не всякое узнавание влечет за собой формирование реальных программ моторных инструкций для блока повторения (или исполнения). Особенно ясно это выступает при .анализе информационного поиска, в котором имеет место нечто вроде «отрицательного узнавания», когда наблюдатель оценивает информацию как бесполезную и поэтому не формирует реальную программу. Как показали многочисленные исследования, число хранимых программ может быть достаточно большим, хотя время их хранения ограничено. Как правило, в ситуациях реальной деятельности реализуется лишь часть сформировавшихся программ моторных инструкций. В то же время едва ли правильным будет заключение о том, что информация, которая не попала в блок повторения, теряется и совсем не используется в поведении. Возникает вопрос, какую позитивную функцию могут выполнять эти потенциальные, избыточные и не реализуемые в блоке повторения программы моторных инструкций? О том, что эти программы действительно могут выполнять определенные позитивные функции, можно судить по так называемому «быстрому чтению», при котором большая часть текста минует блок повторения.
Следовательно, в иерархической системе преобразования входной информации между блоками сканирования и опознания, с одной стороны, и блоком повторения — с другой, могут находиться и другие блоки, обладающие двумя свойствами. Во-первых, скорость их работы должна быть соизмерима со скоростью блока опознавания. Во-вторых, объектом преобразования должны быть потенциальные, еще невербализованные программы моторных инструкций. Здесь мы вплотную подходим к продуктивным функциям описываемой системы переработки информации.
Блок-манипулятор. Выше была дана характеристика манипулятизной способности зрительной системы. В последние годы выполнен ряд исследований этой способности в русле микроструктурного анализа когнитивных процессов [8, 9, 16, 74]. Наиболее демонстративными являются эксперименты, выполненные по методике определения отсутствующего элемента. Суть этой методики состоит в следующем. Перед предъявлением последовательности цифр в одном и том же месте поля зрения испытуемому с помощью цифры-инструкции указывается величина алфавита (т. е. размер отрезка натурального ряда чисел, из которого будет выбрана последовательность) . После этого испытуемому предъявляется ряд цифр, длина которого на единицу меньше величины алфавита. Испытуемый должен определить отсутствующую цифру. Цифры предъявлялись на 50 мс с межстимульными интервалами, равными 50 мс и более. Полученные результаты свидетельствуют о том, что испытуемые успешно решают задачу даже при коротких интервалах и длине ряда, равной 9 цифрам. При такой величине экспозиции и интервала времени явно недостаточно для проговаривания предъявленных цифр. Следовательно, испытуемые оперировали невербализованными потенциальными программами моторных инструкций. Формирование таких программ в описанной ситуации эксперимента было излишне, поскольку испытуемые заранее знали алфавит цифр, который им будет предъявлен. Задача испытуемых состояла в том, чтобы «зачеркнуть» потенциальные и избыточные программы. Однако поскольку цифры предъявлялись в случайном порядке, этого нельзя было делать механически по мере их предъявления. Эти программы нужно хранить и проделывать с ними определенные манипуляции, направленные на упорядочивание случайного ряда. Важной особенностью блока-манипулятора является то, что информация в него может поступать последовательно и учитываться после начала преобразований, осуществляющихся с уже имеющейся в нем информацией. Это обеспечивает непрерывность учета последовательно воспринимаемой информации.
Имеются данные и о трансформации образов геометрических; форм, которые осуществляются в блоке-манипуляторе с помощью операций (мысленного) сдвига, поворота, вращения образов. Работа блока-манипулятора имеет важное значение для переосмысления зрительной стимуляции, для предвосхищения нового положения объекта в пространстве и возможного изменения его формы. В блоке-манипуляторе возможно осуществление трансформаций сенсомоторных схем, наглядных образов и более сложных форм когнитивных репрезентаций, включая символические. Другими словами, он вносит вклад в переструктурирование образа ситуации, в приведение ее к виду, пригодному для принятия решения [33].
Блок семантической обработки информации. При обсуждении возможных преобразований информации, осуществляющихся на пути от запечатления следа в иконической памяти до его воспроизведения, возникает вопрос, возможно ли преобразование одних оперативных единиц в другие. Могут ли подобные преобразования (как и манипуляции с программами моторных инструкций) осуществляться до попадания информации в блок повторения? Для ответа на этот вопрос был проведен сравнительный эксперимент на двух группах испытуемых: экспериментальной, куда вошли опытные операторы-программисты, владеющие двоичной и восьмеричной системами счисления, и контрольной, куда вошли испытуемые, не знающие этих систем. Испытуемым на короткое время (от 80 до 1000 мс) 'предъявлялись 19 двоичных цифр. Время предъявления было таким, что обработать полученную информацию в блоке повторения было нельзя. Тем не менее испытуемые, владевшие навыком перекодирования, в большинстве случаев правильно воспроизводили весь предъявленный материал. Такие же результаты были получены и у испытуемых художников, которые применили другой способ перцептивной группировки информации. Они воспринимали нули как фон, а единицы как фигуры, что значительно уменьшало число объектов запоминания. Эти результаты дают основания для введения еще одного функционального блока, а именно блока семантической обработки невербализованной информации.
Таким образом, переработка воспринимаемой информации, преобразование одних перцептивных единиц в другие, более адекватные задачам деятельности, осуществляются в блоке-манипуляторе и в блоке семантической обработки невербализованной информации.
Приведенные результаты позволяют заключить, что при достаточно высокой степени тренировки исходная информация может, минуя слуховую память, непосредственно попадать в блок смысловой переработки. В блок повторения и соответственно в слуховую память переводится лишь достаточно важная информация, а не исходные сенсорные данные. Основным средством сохранения информации в кратковременной памяти и перевода ее в долговременную память служит явное или скрытое проговаривание. В долговременной памяти информация может храниться неограниченно .долгое время, по-видимому, в форме абстрактного графа логических высказываний, своего рода концептуального хранилища.
Такая организация взаимоотношений между зрительной и слуховой кратковременной памятью тем более рациональна, что зрительная система является действительно уникальной с точки зрения одномоментного охвата сложной ситуации и возможностей аналоговой трансформации первичного отображения реальности.
Описанная система переработки информации выполняет не только репродуктивные, но и продуктивные, в том числе и смыслообразующие функции. Дело в том, что кратковременная память работает не только в качестве устройства приема информации, но и является местом встречи потоков информации, поступающей из внешнего мира и из долговременной памяти. У субъекта всегда имеется собственная система сформировавшихся ранее оперативных единиц, которая участвует в приеме информации и обеспечивает второй аспект процесса уподобления, а именно уподобление объекта субъекту.
Наличие в системе переработки информации продуктивных блоков свидетельствует о существовании еще одной формы уподобления, а именно уподобления информации целям решения практических и мыслительных задач.
В заключение характеристики микроструктуры исходных уровней познавательных действий следует кратко остановиться на общих особенностях описанной системы переработки информации. Каждый из блоков этой схемы, как указывалось выше, вначале представлял собой некоторую теоретическую конструкцию, модель. Затем создавались экспериментальные условия, в которых тот или иной блок мог быть обнаружен в максимально чистом, т. е. изолированном от влияния других блоков, виде. Естественно, что это удавалось не всегда. С уверенностью можно лишь утверждать, что в экспериментальных ситуациях изучаемый блок выполнял доминирующую функцию. На основании имеющихся в настоящее время результатов перечень когнитивных операций и блоков может быть существенно расширен. Имеются и другие варианты репрезентации системы функциональных блоков, которые зависят от теоретических и практических задач, решаемых исследователем. Описанная система предназначена для понимания и детализации процессов формирования образно-концептуальной модели в естественных условиях деятельности оператора, т. е. она предназначена для описания и интерпретации живого 'процесса приема и переработки информации, а не только его искусственных лабораторных аналогов.
Из этих положений следует ряд важных выводов. Система приема и переработки информации полиструктурна и гетерархична. В процессе ее функционирования возможно участие не всех блоков, а различных их комбинаций. Общее правило состоит в том, что блоки не имеют своего жестко фиксированного места и, следовательно, временные характеристики их функционирования могут быть различными. Независимо от числа блоков, конституирующих реальный процесс, система представляет собой организованную целостность, т. е. характеризуется определенным расположением своих элементов и определенными типами координации их взаимодействий. Организация системы переработки информации в высшей степени динамична, и ее динамика определяется как движением •информации, так и связями со средой. В описанной системе менее всего фиксированы продуктивные блоки: блок-манипулятор и блоксемантической переработки. В ряде ситуаций они «перемещаются» практически ко входу зрительной системы, когда извлечение смысла ситуации как бы предшествует ее восприятию. В настоящее время высказываются находящие известное подтверждение гипотезы о существовании предкатегориальной селекции, о квазисемантических преобразованиях, которые выполняются на уровнях иконической памяти и даже сенсорного регистра.
Исследователи кратковременной памяти в настоящее время ищут новые концептуальные схемы ее описания. Блочные модели памяти заменяются многомерными пространственными моделями. В экспериментальных и теоретических исследованиях преодолеваются распространенные хронологические и иерархические модели и ставятся задачи построения моделей, адекватно описывающих эффекты одновременной обработки сенсорной и семантической информации. Объяснение подобных эффектов требует обращения к психологическим и психолингвистическим исследованиям значения и смысла на образном и вербальном уровнях [151, 67]. Такие исследования свидетельствуют о близости (и даже тождественности) семантических структур образной и вербальной репрезентации явлений на уровнях глубинной семантики. Другими словами, постепенно преодолевается разрыв между сенсорными и перцептивными эталонами, мнемическими схемами, невербализованными программами моторных инструкций и значением, т. е. то, что казалось нижележащим, досемантическим уровнем, может вполне соседствовать с осознанным уровнем вербальной обработки информации и даже превосходить его по ряду параметров, в первую очередь по продуктивности. Эргономика и инженерная психология не могут оставить без внимания эти исследования познавательной деятельности, так как оптимизация образного, знакового и символического представления информации на средствах отображения — это существенный резерв повышения эффективности деятельности операторов в человеко-машинных системах.
Таким образом, микроструктурный анализ когнитивных процессов все дальше и дальше отходит от первоначальных упрощенных представлений, характерных для информационно-кибернетического .подхода. Значительно больше внимания уделяется психологическим характеристикам операций и функциональных блоков, преодолен постулат простой последовательности выполнения элементарных операций. Данные микроструктурного анализа успешно используются для интерпретации процессов информационной подготовки и принятия решения. Разумеется, было бы наивно предполагать, что сложная мыслительная деятельность может быть составлена из функциональных блоков. В то же время имеющиеся результаты микроструктурного анализа свидетельствуют о неадекватности многих представлений о мыслительной деятельности, возникших без учета реальной сложности преобразований, в том числе и семантических, выполняемых на уровнях восприятия, памяти, перцептивно-моторных схем и т. д.
§ 4. Информационная подготовка решения
Актуальность исследований процессов информационной подготовки и принятия решений связана с наиболее существенными особенностями СЧМ. Эти системы должны быть способны к решению творческих задач, возникающих в ходе практического поведения. Практическое поведение системы или ее функционирование протекает в условиях, когда имеется большое число динамических и взаимосвязанных факторов, создающих в своей совокупности большую неопределенность в выборе оптимального действия. СЧМ, как правило, работает в режиме реального времени и всегда в условиях дефицита последнего. Наконец, СЧМ работает в условиях изменяющейся внешней обстановки и наличия конкурирующих, конфликтных факторов (что делает ее, по существу, игровой системой). Поэтому она должна быть способна учитывать происходящие во внешней обстановке изменения, устанавливать законы протекания этих изменений с целью их прогнозирования и предварительного приспособления к ним или парирования их. СЧМ, рассматриваемая как сложный организм, должна создавать модель этих условий или, иначе говоря, модель внешней обстановки и своего собственного состояния. Поскольку внешняя обстановка и состояние системы все время меняются, система должна непрерывно строить, изменять, уточнять создаваемые модели. Но так как возможно построить практически бесконечное число моделей одной и той же обстановки, система управления должна строить модели, адекватные стоящим перед ней в данный момент задачам, т. е. приводить информацию к виду, удобному для принятия решения и осуществления исполнительных действий. В принятом решении должно быть учтено состояние переменных и конфликтных факторов, должен быть построен план поведения на ближайший и более отдаленный промежуток времени. Принятие решения в условиях неопределенности и конфликта, возникающих в работе СЧМ,— прерогатива человека-оператора. Операторы, принимающие решение в этих ситуациях,— это операторы-исследователи и операторы-руководители, работающие в режиме оперативного мышления. Результатом оперативного мышления или принятия решения в СЧМ является построение образа новой ситуации и построение последовательности действий с управляемыми объектами, посредством которой наличная ситуация может быть переведена в желаемое (в том числе и продиктованное условиями) состояние. Оперативное мышление тесно связано с практическим мышлением, характерные черты которого выделены Б. М. Тепловым [57]: решение должно быть положительным и наилучшим в данных конкретных условиях (для теории ценны и отрицательные результаты); решение должно быть конкретным (на основании анализа сложного материала с обязательным выделением существенного необходимо синтезировать решение, дающее простые и определенные положения); решение должно быть жестко ограничено во времени.
В описаниях оперативного мышления, принятия решений большое внимание уделяется интуиции, т. е. способности быстро разбираться в сложной ситуации и почти мгновенно находить правильное решение. Интуиция или инсайт относятся к завершающей стадии мыслительного процесса — к возникновению идеи решения. Предшествующим стадиям уделялось значительно меньшее внимание, что сказалось и на бедности психологических интерпретаций явлений интуиции. Несмотря на это можно указать некоторые признаки интуитивных решений, хотя и полученные путем самонаблюдения, но, видимо, имеющие объективный характер, так как указания на них делались неоднократно и независимо друг от друга. Эти признаки таковы:
чувство полной уверенности в правильности результата и ясности, что надо делать дальше [66, с. 127];
чувство стройности, «нужного вида» результата, которое иногда достигается не сразу, но будучи достигнуто, порождает чувство уверенности [;65, с. 150];
автоматизация действий после инсайта, выполнение технических операций без размышления, с полной уверенностью, что желаемый результат будет достигнут [65, с. 193].
Подобные черты характеризуют и результативную часть оперативного мышления. Однако содержательная характеристика завершающей части акта принятия решения возможна лишь на основании понимания его подготовительных этапов, которые изучены далеко не полно.
Информационная подготовка решения — это совокупность действий и операций по приему и обработке информации о внешней среде, о состоянии системы управления, о ходе управляемого процесса, а также вспомогательной и служебной информации. В ходе осуществления этих действий и операций, к числу которых относятся процессы информационного поиска, обнаружения, идентификации, опознания, перекодирования и трансформации информации, предъявленной на средствах отображения, оператор строит образно-концептуальную модель (ОКМ) ситуации. Если сопоставить эту стадию деятельности операторов с многочисленными описаниями творческого процесса, то он ближе всего соответствует стадии возникновения темы.
Эта стадия деятельности характеризуется тем, что информация переводится на язык образов, схем, оперативных единиц восприятия и т. п., которым владеет оператор. Дальнейшая обработка информации осуществляется на этом языке — языке собственной ОКМ оператора. На второй стадии оператор анализирует и сопоставляет ситуацию с имеющейся у него или специально вырабатываемой для данного конкретного случая системой оценочных критериев и мер, которые определяют характер и направленность пре-
образований ОКМ ситуации. В описаниях творческого процесса этой стадии соответствует стадия восприятия темы, анализа ситуации и осознания проблемы. Основная задача этой стадии состоит в трансформации ОКМ в модель проблемной ситуации, возникшей в связи с выбором темы. Эта новая модель, адекватная объективно сложившейся проблемной ситуации, является сферой кристаллизации проблемы, подлежащей решению. Первая и вторая стадии — это сознательная работа, направленная на создание ОКМ и модели проблемной ситуации, ее скелета, схемы, т. е. своего рода функциональных органов индивида.
Если на этапе формирования ОКМ фиксируются неопределенность или чрезмерно большое число степеней свободы в ситуации, то на стадии формирования проблемной ситуации происходит осознание (и означение) противоречия или конфликта, порождающего эту неопределенность. В результате этой работы часто создается возможность визуализации того мысленного пейзажа, в котором должны протекать события, и интуитивного представления об их ходе.
На третьей стадии происходит напряженная работа над решением проблемы. Она состоит в оперировании исходными и преобразованными данными и протекает в виде целенаправленных действий либо в виде неосознаваемых и автоматизированных операций, которые далеко не всегда имеют вербальный характер. На основании исследований деятельности операторов с графическими информационными моделями можно заключить, что на этой стадии большой удельный вес занимают зрительно-пространственные трансформации и манипуляции элементами проблемной ситуации или ситуацией в целом. Основное внимание при этом уделяется определению различных взаимоотношений между вступившими в противоречие и породившими конфликтную ситуацию элементами или их комплексами. По мере такого оперирования создается более полное представление о предметном содержании ситуации, возможных направлениях ее развития, структурируется значение вступивших в противоречие элементов, комплексов и свойств ситуации. Результатом такой работы может быть порождение новых образов, создание новых визуальных форм, несущих определенную смысловую нагрузку и делающих значение структурированным и видимым. Подобный тип деятельности все чаще называют визуальным мышлением [64; 74]. На этой стадии информационная подготовка решения переходит в процесс принятия решения.
Четвертая стадия — собственно принятие решения. Она чаще всего описывается как одномоментный акт озарения, хотя ему предшествует длительная работа. Его содержательная сторона описывается в терминах возникновения идеи, усмотрения смысла и природы обнаруженного ранее противоречия или конфликта. Тем не менее природа озарения остается неясной и ждет своих исследователей. Наконец, последняя стадия — реализация решения — это стадия исполнительных действий и особых пояснений не требует. Процессы информационной подготовки принятия решения не беспристрастны. Они испытывают на себе влияние так называемых субъективных факторов, личностно-смысловых образований, к числу которых относятся мотивы, субъективные цели, установки, воля и т. п. Эти влияния сказываются на способах интерпретации и преобразования условий и предметного содержания задачи, на точности полученного результата, на стиле его реализации. Личностно-смысловые образования влияют на процессы информационной подготовки и принятия решений значительно сильнее, чем на более элементарные исполнительные и когнитивные акты. Это объясняется тем, что оценочные критерии в сложных ситуациях, характеризующихся в том числе и недостаточностью информации о среде, вырабатываются, как правило, субъектом деятельности. И этот процесс их выработки, упорядочивания и переупорядочивания, реорганизации осуществляется непрерывно в ходе мыслительной деятельности. Именно он и влечет за собой изменение целей, выработку и постановку новых целей.
Значительность роли неосознаваемых компонентов в процессах информационной подготовки и собственно принятия решения, равно как и в любой области творчества, ставит задачу их объективного исследования. Метод самонаблюдения, естественно, не может дать достаточно точных данных, хотя с его помощью еще можно извлечь очень многое. Это подтверждает и приведенная выше характеристика, в которой суммированы преимущественно данные самонаблюдения.
Как в психологических, так и в прикладных инженерно-психологических исследованиях ищутся и опробоваются различные экспериментальные методы анализа мыслительной деятельности и составляющих ее стадий, фаз, компонентов. Этот процесс поиска еще не закончен. Объект исследования настолько сложен, что для его изучения необходимо использование самых разнообразных методов, в том числе и таких, которые помогли бы дифференцировать выделенные стадии. В настоящее время с большим успехом изучаются стадии, связанные с информационной подготовкой и реализацией решения, чем стадии собственно принятия решений.
Попытки воспользоваться характеристиками глазодвигательного поведения для прогноза затрат времени оператора, работающего в режиме информационной подготовки решения, потерпели неудачу. В этом виде деятельности нарушается регулярность саккадических движений (которая имеет место в задачах информационного поиска [4]) и длительность зрительных фиксаций варьирует в очень широких пределах: от 200 мс до многих секунд. Причина этого состоит в том, что в этом виде деятельности начинают принимать участие другие действия, изменяется и состав операций. Поэтому прежде чем ставить метрические задачи, необходимо выявить состав действий, участвующих в информационной подготовке решения и, в частности, в формировании ОКМ и модели проблемной ситуации.
Анализ микроструктуры преобразований информации дал основания предположить, что в ОКМ может поступать информация из разных функциональных блоков как в терминах первичного отображения реальности, так и в терминах вторичного или N-ричного отображения (рис. 17). Одна и та же ситуация может последовательно (или одновременно) отображаться посредством различных оперативных единиц восприятия и памяти в ОКМ. Иными словами, ОКМ представляет собой многомерное отображение реальности, отображение, описанное на разных перцептивных, символических и вербальных языках1. Соответственно в функциональный блок вербального перекодирования могут переводиться осмысленные сведения, извлеченные из ситуации, а не исходная информация, данная зрительно.
На основании микроструктурного анализа различных преобразований информации в зрительной и слуховой системах можно прийти к заключению, что перцептивные, опознавательные и мнемические действия участвуют не только в информационной подготовке мыслительного акта, но и вносят существенный вклад в реализацию последнего. В процессе решения задач на одном шаге информационного поиска (т. е. за время, равное продолжительности одной зрительной фиксации) может развернуться достаточно широкий диапазон преобразований информации — от сканирования до невербальных семантических преобразований. В зависимости от сложности решаемой задачи число и тип преобразований меняются, что находит свое выражение, в частности, в длительности зрительных фиксаций. Это означает, что человек, решающий задачу, обладает способностью настраиваться на перцептивную или семантическую сложность информационного поля. Указанная способность в некоторой мере подобна настройке зрительной системы на интенсивность светового потока. Если последняя выражается в зрачковых реакциях, то настройка на сложность выражается в длительности зрительных фиксаций и в количестве перерабатываемой информации.
____________________________
1 Вместе с тем, по нашему мнению, в высшей степени вероятны предположения ряда психолингвистов о существовании глубинных семантических структур, инвариантных по отношению ко всем этим языкам [67].
Это подтверждается исследованием скорости переработки информации при формулярном способе кодирования. Испытуемым в одном и том же месте поля зрения предъявлялись буквенно-цифровые формуляры. От серии к серии менялись задачи. В опыте находилась величина межстимульного интервала между предъявлением формуляров, при которой испытуемые давали не менее 90% правильных ответов. Обнаружен достаточно большой диапазон изменения скорости обработки информации при одном и том же количестве и способе ее предъявления и при различных задачах, которые решает оператор. Эта скорость меняется от 1 до 100 символов в секунду. Максимальная скорость получена в задачах обнаружения искомого символа при хорошо усвоенной системе кодирования информации. Минимальная скорость получена при чрезмерном усложнении требуемых от операторов способов семантической обработки информации [27].
В реальной работе оператора скорость обработки информации, как правило, не постоянна. Это связано с тем, что оператор от режима поиска переходит к режиму построения ОКМ и собственно к режиму решения. Как указывалось выше, деятельность оператора имеет стадийный, фазовый характер. Фазовость познавательной деятельности обнаружилась при исследовании процессов решения оперативных задач на имитаторе мнемосхемы энергосистемы. В этом случае у операторов (в отличие от задач информационного поиска) отсутствовали сколько-нибудь конкретные и отчетливые опознавательные эталоны и оценочные критерии и им приходилось формировать их в самом процессе решения, руководствуясь ранее усвоенной системой правил. В излагаемом исследовании [40] осуществлялась полиэффекторная регистрация ряда функциональных систем, участвующих в информационной подготовке и принятии решения: ЭОГ, ЭМГ нижней губы и ЭЭГ затылочной области мозга.
Операторам предлагалось проанализировать состояние отдельных энергоблоков или системы в целом. В случае обнаружения отклонения от нормы испытуемый должен был принять решение о способе восстановления нормального состояния. Проводилась параллельная запись показателей работы ряда физиологических систем. Оказалось, что по данным электроокулограммы можно выделить четыре фазы глазодвигательного поведения, отличающиеся амплитудой скачков и длительностью фиксаций. На первой фазе наблюдаются скачки большой амплитуды, на второй — малой. Длительность фиксаций на первых двух фазах сравнительно невелика и находится в пределах 0,3—1,0 с. Затем наступает третья фаза длительных фиксаций (до 5 с), перемежаемых скачками большой амплитуды, и, наконец, четвертая фаза, характеризующаяся отсутствием макродвижений глаз. Эта последняя фаза могла продолжаться десятки секунд. Депрессия а-ритма была наименьшей на первой и третьей фазах (до 40% от фона). Максимальная депрессия а-ритма наблюдалась на четвертой фазе решения (80% от фона). Артикуляционный аппарат по данным регистрации электромиограммы нижней губы включался на завершающих этапах решения задач. При решении самых сложных задач наблюдалось поочередное включение всех трех регистрируемых систем, однако и в этом случае удельный вес артикуляционной системы в процессе решения оставался небольшим. Данные, полученные при исследовании решения задач этого типа, не дают основания для выделения специальной фазы оперирования вербальным отображением проблемной ситуации.
Психологически обнаруженные фазы могут быть интерпретированы следующим образом. На названных первых двух фазах осуществляются ознакомление с элементами ситуации и анализ свойств и отношений элементов. Иными словами, эти фазы ответственны за построение ОКМ и модели проблемной ситуации. При решении сравнительно простых задач наблюдается переход к третьей фазе, которая может рассматриваться как фаза опознания ситуации, направленная на формирование и оценку пригодности программы действий. Последняя строится на основании ряда правил и способов деятельности, усвоенных в процессе обучения. На этой фазе осуществляется выбор варианта из ряда стандартных вариантов решения. Наконец, в более трудных случаях, когда регистрируется четвертая фаза, мы имеем дело с деятельностью во внутреннем плане в собственном смысле этого слова. Эта деятельность связана с построением на основе манипулирования и преобразования ОКМ совершенно нового варианта решения.
Анализ взаимоотношений описанных выше четырех фаз показал, что процесс решения сложных задач имеет рекурсивный характер. Возможны переходы от первой фазы сразу к четвертой, возвраты от четвертой к первой или второй и т. д. Наиболее вероятны переходы от первых фаз к третьей и четвертой. Между последними фазами вероятность переходов близка к нулю. Вместе с тем от третьей или четвертой фазы максимальна вероятность перехода к завершающей стадии — стадии подготовки решения в плане внутренней речи и формирования ответа.
Таким образом, регистрация параметров работы отдельных физиологических систем дает основание для объективной оценки функциональной структуры сложной познавательной деятельности и характеристики преобразований, которые совершаются оператором в 'проблемной ситуации.
Исследования функциональной структуры микроструктуры деятельности необходимы для оптимизации существующих вариантов информационных моделей. Информационная модель должна соединять оператора с объектами управления, а не быть преградой, отделяющей его от них.
ЛИТЕРАТУРА
1. Маркс К. и Энгельс Ф. Соч., т. 23.
2. Алякринский Б. С. Временная развертка рабочих операций человека.— В кн.: Проблемы космической биологии, т. 34. М., «Наука», 1977.