3D-биопринтер для лечения сахарного диабета

В начале декабря 2017 года австралийский университет Вуллонгонга представил новый настраиваемый 3D-биопринтер, который способен улучшить лечение пациентов с диабетом первого типа.

Изобретатели назвали систему 3D-биопринтером для трансплантации клеток поджелудочной железы (PICT). Новая технология была представлена министру здравоохранения Южной Австралии, а затем передана для использования Королевской больнице Аделаиды, которая стала первой в мире клиникой с подобным оборудованием.

 

3D-биопринтер

Разработчики поясняют, что система наносит специальные биочернила, содержащие инсулин-продуцирующие островковые клетки, на трансплантируемые 3D-печатные каркасные структуры. Предполагается, что такой метод должен усовершенствовать существующий процесс трансплантации островковых клеток от доноров человека, применяемой для лечения серьезных случаев диабета. Новая технология позволяет снизить риск отторжения пересаженной ткани за счет включения в донорскую ткань клеток пациента.

 

Кроме того, биопринтер печатает несколько типов клеток, поэтому его каркасная структура также может включать эндотелиоциты, необходимые для роста новых кровеносных сосудов в пересаженной островковой ткани.

Исследовательский совет выделил грант Австралийскому центру передовых технологий в области электроматериалов, который возглавляет профессор Гордон Уоллес (Gordon Wallace), и теперь дальнейшая разработка и улучшение 3D-биопринтера, поступившего в Королевскую больницу Аделаиды, будет проводиться его командой.

 

3D-печать среднего уха для возвращения слуха

На ежегодном собрании Радиологического общества Северной Америки (RSNA) в декабре 2017 года было показано, как с помощью 3D-печати возможно воспроизводить точные копии среднего уха для возвращения слуха людям. Разработка начала применяться на практике.

Путем преобразования 3D-изображений, сделанных с помощью компьютерной томографии, в напечатанные на 3D-принтере протезы хирургам удалось с точностью поместить четыре имплантата разных размеров в человеческие уши.

 

 

Наглядное сравнение размером монеты и напечатанного на 3D-принтере протеза среднего уха

 

По мнению ученого, данный метод может улучшить хирургическую процедуру, которая часто терпит неудачу из-за неправильных размеров протезных имплантатов. В проведенном исследовании четыре хирурга осуществили введение имплантов в четыре разных средних уха. Все хирурги смогли точно совместить модель протеза с височной костью, содержащей среднюю и внутреннюю части уха. Шансы на такой исход при обычном протезировании равны 1:1296.

Предоставляемая 3D-моделированием возможность видеть комплексные анатомические отношения позволяет выйти на новый уровень изучения, понимания и медицинского планирования.

Следующим шагом для исследователей будет разработка биосовместимого материала. В качестве такой платформы группа исследователей рассматривает использование выращенных стволовых клеток.[2]

4 декабря 2017 года Управление США по контролю за пищевыми продуктами и лекарственными средствами (FDA) выпустило новые рекомендации по созданию медицинских моделей с помощью 3D-принтеров. В руководстве подробно рассмотрены аспекты проектирования и испытания моделей, а также требования к их качеству.

Хотя трехмерная печать относится к относительно новым технологиям, она уже нашла широкое применение в клинической практике – например, ее используют для воссоздания точных копий сложных анатомических структур и имитаций хирургических операций. Заметив стремительную эволюцию этой технологии, FDA выпустило специальные рекомендации, чтобы помочь производителям более эффективно выводить на рынок 3D-печатные модели.

Пример 3D-печати части черепа