1. Простые кумарины: кумарин (а-бензопирон), изокумарин и 3,4- дигидрокумарин.
2. Окси- и метокеикумарины, содержащие в различных положениях окси- или метоксигруппы и имеющие специфические тривиальные названия. Часто оксикумарины содержатся в растениях в виде гликозидов.
Структурные формулы простых кумаринов.
Структурные формулы окси- и метоксикумаринов.
Структурные формулы гликозидов оксикумаринов.
3. Фурокумарины. Фурановый цикл может присоединяться к кумарину в различных положениях, часто в составе фурокумаринов находятся окси- и метиокси-группы.
4. Пиранокумарины (хромено-а-пироны). В их состав наряду с кумариновым входит пирановый гетероцикл.
К пиранокумаринам относят виснадин и дигидросамидин, обнаруженные в корневищах и корнях вздутоплодника сибирского.
5. Бензокумарины. В состав соединений этой группы входит дополнительно бензольный цикл.
6. Фуробензокумарины, содержащие в структуре дополнительно бициклическую систему, состоящую из фуранового и бензольного циклов, а также (возможно) окси- и метоксигруппы.
Структурные формулы фурокумаринов.
Структурные формулы пиранокумаринов.
При большом разнообразии кумаринов в растениях перечисленные выше группы — основные. Кумариновая группировка входит также и в структуру БАВ сложного состава, например, некоторых антибиотиков (новобиоцина, афлатоксина и др.).
Кумарины представляют собой белые или желтоватые, бесцветные, душистые, кристаллические вещества. При нагревании до 100 "С и выше кумарины легко возгоняются. Ими предположительно обусловлен специфический запах сена. Многие кумарины и фурокумарины проявляют характерную флюоресценцию в УФ-свете с возникновением зеленоватого, жёлтого, фиолетового и голубого (например, производные 7-оксикумарина) цветов. Количество, характер и положение заместителей в структуре кумаринов влияют на интенсивность флюоресценции. Кумарины растворимы в органических растворителях (хлороформе, дихлорэтане, спиртах), мало растворимы в петролейном эфире, плохо (практически нерастворимы) — в воде. Растворимость кумаринов в воде увеличивается, если они содержатся в виде гликозидов или при наличии оксигрупп. В зависимости от полярности некоторые кумарины можно разделить методом колоночной хроматографии на гидрофильных или гидрофобных сорбентах при сочетании с избирательным элюированием различными растворителями. В целом функциональные группы в структуре кумаринов определяют их растворимость, полярность и сродство к различным сорбентам.
Некоторые из кумаринов оказывают спазмолитическое, сосудорасширяющее, диуретическое или успокаивающее действия. Фурокумарины обладают сильными фотосенснбилизирующими свойствами (повышают чувствительность кожи к инсоляции), их применяют для лечения ряда кожных заболеваний (например, препараты бероксан, аммифурин, псорален). Ряд кумаринов обладает наркотическими, эстрогенными, аналгезирующим, бактериостатическим и другими свойствами. Производные пиранокумаринов оказывают спазмолитическое и коронарорасширяющее действия. Применяют спазмолитический препарат фловерин (из корней вздутоплодника сибирского). Фурокумарины (пейцеданин) усиливают действие алкилирующих противоопухолевых препаратов.
51. Методы выделения кумаринов. разделить на три группы: химические, экстракционные и хроматографические.
Химические методы (метод Шпета) Выделение смеси кумаринов и очистка их от балластных веществ основаны на специфическом свойстве: обратимом раскрытии лактонного кольца в щелочной среде при нагревании и закрытии — в кислой среде. При раскрытии кольца в щелочной среде образуются соли кумариновой кислоты, растворимые в воде, а в кислой среде — лактоны, растворимые в органических растворителях и не растворимые в воде. На основании избирательной растворимости кумарины отделяют от балластных веществ. Методика: измельчённое растительное сырьё обрабатывают эфиром. Сконцентрированный эфирный экстракт промывают 0,5% раствором гидроксида натрия для удаления фенольных соединений и органических кислот. Затем раствор смешивают с 5—10% спиртовым раствором гидроксида натрия и оставляют при нагревании на несколько часов. Происходят омыление сложных эфиров и раскрытие а-пироновых циклов кумаринов с образованием солей соответствующих кислот. Для удаления неомыляемых веществ (высокомолекулярных спиртов, стеринов и т.д.) жидкость обрабатывают эфиром, предварительно разбавив её 6—8-кратным количеством воды. Далее водно-щелочной раствор подкисляют, образовавшиеся при этом кумарины извлекают эфиром. Одновременно в эфир переходят фенолы и полученные после омыления кислоты. Эти балластные вещества удаляют промывкой эфирного извлечения 0,5% раствором гидроксида натрия. При сгущении эфирного раствора получают техническую смесь кумаринов в виде смолистого осадка или кристаллов. Недостатки метода — возможность необратимых изменений многих кумаринов при нагревании, невозможность применения для выделения ацилированных фуро- и пиранокумаринов (образуются оксилактоны). Для разделения кумаринов используют вакуум-перегонку, вакуум- сублимацию и дробную перекристаллизацию.
Экстракционные методы. Для экстрагирования сырья используют неполярные растворители (гексан, петролейный эфир, сжиженные газы). Затем вытяжки сгущают, кумарины, обладающие низкой растворимостью, выпадают осадок. Метод эффективен для выделения ацилированных фуро- и пиранокумаринов. Применение сжиженных газов (фреона-12, угольной кислоты) позволяет быстро в нативном состоянии с высоким выходом выделить смесь кумаринов. Разделение и очистку кумаринов осуществляют избирательной экстракцией органическими растворителями (четырёххлористым углеродом, петролейным эфиром, гексаном и др.), упаркой, обработкой извлечений углем и дробной кристаллизацией. Недостатки метода — использование большого количество огне- и взрывоопасных веществ, а также длительность процессов.
Хроматографодческие методы Растительное сырьё экстрагируют последовательно растворителями с возрастающей полярностью (петролейным эфиром, этиловым эфиром, бензолом, хлороформом и этилацетатом) или спиртом. Затем извлечения концентрируют и остатки наносят на хроматографические колонки с оксидом алюминия (реже с другими сорбентами). Осуществляют элюирование сначала петролейным эфиром, затем растворителями с возрастающей полярностью. Элюаты упаривают, проводят кристаллизацию кумаринов, далее их перекристаллизовывают (дробная кристаллизация), чаще из этилового спирта. Процессы выделения и разделения характеризуются длительностью и сопровождаются большими потерями кумаринов. В качестве примера производства суммарных очищенных препаратов, содержащих кумарины, далее рассмотрена технология аммифурина.
52. Производство аммифурина. Аммифурин — суммарный очищенный новогаленовый препарат, содержащий сумму фурокумаринов (изопимпинеллин, бергаптен и ксантотоксин), выделенную из плодов амми большой. Структурные формулы фурокумаринов
Содержание суммы фурокумаринов в препарате в пересчёте на сухое вещество должно быть не ниже 95%. Аммифурин представляет собой кристаллический порошок светло-жёлтого цвета со специфическим запахом, хорошо растворим в горячих этиловом и метиловом спиртах, мало растворим в холодных органических растворителях, не растворим в воде. Препарат обладает фотосенсибилизирующей активностью, тонизирует гладкие мышцы кишечника и матки. ТП состоит из следующих стадий. Семена измельчают до размера частиц 0,5—1 мм. Степень измельчённости оказывает большое влияние на выход фурокумаринов в процессе экстракции. В качестве экстрагента используют этиловый спирт-ректификат. Экстракцию ведут в реакторе с обратным холодильником кипящим спиртом (соотношение спирта к сырью равно 1:6). Экстракция продолжается 2 ч. Извлечение передавливают сжатым азотом. Экстрагируют сырьё 3 раза. Два первых извлечения передают на обработку, а третье используют для первичной экстракции новой порции сырья, Вакуум-выпаривание и осаждение суммы фурокумаринов. Объединённые первое и второе извлечения упаривают в вакууме до кубового остатка приблизительно 1/6 первоначального объёма, затем кумарины осаждают при энергичном перемешивании с 2-кратным количеством воды. Смесь охлаждают до 2-4 °С. В течение суток выпадает смесь фурокумаринов со смолами, осадок отфильтровывают на нутч-фильтре и промывают водой. Получают сумму фурокумаринов в виде смолки зелёного цвета.
Получение технического аммифурина. Сумму фурокумаринов заливают полуторным количеством горячей (80—82 °С) воды, перемешивают и получают кашицеобразную массу. К массе добавляют половинное (по отношению к фурокумаринам) количество гидроксида кальция и разбавляют равным по отношению к смеси объёмом горячей (80—85 °С) воды. Всё перемешивают 10—15 мин и оставляют на 1 ч. Фурокумарины переходят в водный раствор, а смолы и балластные вещества остаются в виде осадка. Вследствие расщепления лактонного цикла образуется кальциевая соль кумариновой кислоты. Кальциевая соль ароматической оксикислоты растворима в воде, раствор отфильтровывают от осадка балластных веществ на нутч-фильтре. Осадок выбрасывают. Перевод соли в кумарины. Фильтрат в реакторе подкисляют хлороводородной кислотой до рН = 2 при перемешивании. Происходит образование a-пиронового (лактонного) кольца. Экстракция жидкость-жидкость. Из водного раствора фурокумарины экстрагируют хлороформом семь раз. Для первой экстракции берут 2 части хлороформа на 10 частей водной фазы (1:5), остальные экстракции проводят при соотношении 1:10 при перемешивании в течение 5-10 мин. Выпарка. Объединённые хлороформные вытяжки упаривают до 1/8 первоначального объёма, затем до густоватой массы. Перекристаллизация. Густую массу заливают двумя объёмами этилового спирта и нагревают до кипения, горячий раствор фильтруют через обогреваемый фильтр, далее раствор помещают в холодильник на 6-8 ч при 4 °С для кристаллизации аммифурина. Кристаллы отфильтровывают и сушат в вакуум-сушилке. Получают технический аммифурин. Получение фармакопейного продукта (перекристаллизация). Полученный кристаллический порошок заливают 10-кратным количеством спирта-ректификата и нагревают на водяной бане до кипения, раствор фильтруют через обогреваемый фильтр. Затем раствор охлаждают в холодильнике в течение 6—8 ч при 4 °С, Полученный осадок отфильтровывают, промывают охлаждённым спиртом, сушат в вакуум-сушилке. Получают фармакопейный аммифурин. Выход препарата составляет 50,2%, выход по кумаринам — приблизительно 36%.
53. Анализ кумаринов. Количественное определение суммы кумаринов (гравиметрический метод) по методике, разработанной Г.К. Никоновым. Навеску из 25 г измельчённого сырья экстрагируют в установке типа «Сокслет» хлороформом в течение 5 ч. Из хлороформного извлечения отгоняют растворитель. Остаток заливают 50 мл 10% водного раствора гидроксида калия и нагревают на водяной бане (70-80 °С) в течение 5 мин. Затем водный раствор обрабатывают в делительной воронке хлороформом порциями по 25 мл 4—5-кратно, освобождают кумарины от балластных веществ (стеринов, спиртов, литшдов, углеводородов). Балластные вещества переходят в хлороформ, а кумарины в виде калиевой соли кумариновой кислоты остаются в воде. Далее водный щелочной раствор подкисляют 20% водным раствором серной кислоты и извлекают кумарины хлороформом порциями по 25 мл 5— 6 раз (проба на сухой остаток). Кумарины в виде лактонов переходят в хлороформное извлечение вместе с органическими кислотами. Для удаления органических кислот и фенолов хлороформное извлечение сначала обрабатывают 25 мл 5% раствора карбоната натрия, а далее водой. Хлороформный раствор кумаринов обезвоживают прокалённым сульфатом натрия, который отфильтровывают, а хлороформное извлечение заливают в предварительно взвешенную колбу. Хлороформ отгоняют, остаток высушивают при 70 "С до постоянной массы. Затем определяют содержание кумаринов в процентах от загруженного сырья. В препаратах кумарины определяют фотоколориметрическими методами по образованию вишнёво-красной окраски в щелочной среде с диазотированными соединениями. Возможно также использование спектрометрии, флюоресциметрии в УФ-области, предложены полярографические методы, хроматоспектрофотометрический и хроматополярографический методы.
7. Растительные ресурсы и их охрана
Растительные ресурсы - это все растительные организмы (высшие растения, грибы, мхи, лишайники, водоросли), которые растут на территориях и акваториях и используются или могут быть использованы для различных нужд бы общества. Среди них особое хозяйственное значение имеют лесные ресурси.
Леса занимают около трети поверхности земного шара. Древесина является универсальной сырьем, из которого может быть изготовлен более 15-20 тыс. различных изделий. Известно также гидроклиматичних, почво-и п полезащитное значение леса. Кроме того, очень важны санитарно-гигиеническая, бальнеологическая и рекреационная функции лесов. Лесам присущ высокий уровень образования биомассы - сегодня они создают около изько 92% биомассы суши. Леса ценны еще и тем, что есть восстановительными ресурсами и производят примерно две трети органического вещества, которая создается на земле. Землі.
Лесными ресурсами являются древесные, технические, лекарственные и другие продукты леса, которые используются для удовлетворения потребностей населения и производства и воспроизводятся в процессе формирования лесных природных комп лексов. К лесным ресурсам также относятся полезные свойства лесов (способность уменьшать негативные последствия природных явлений, защищать почву от эрозии, предотвращать загрязнение окружающей природног в среды и очищать его, способствовать регулированию стока воды, оздоровлению населения и его эстетическому воспитанию и т.п.), которые используются для удовлетворения общественных потребностиб.
Нерациональное использование растительных ресурсов, особенно тех видов растений, для которых характерен длительный жизненный цикл, может привести к тому, что из категории возобновляемых они перейдут в невозобновимые, что и произошло со многими, ныне редкими и исчезающими, видами растений. Исчезновение биоразнообразия флоры, и отдельных видов в частности, связано с несколькими основными факторами антропогенного характера. Основной из них – это разрушение среды обитания. Поскольку большинство видов может существовать только в довольно узком свойственном им диапазоне условий среды, лишение их необходимых местообитаний служит основной причиной исчезновения этих видов. Сопутствующими факторами являются фрагментация ареалов, синантропизация флоры, изменение структуры природных фитоценозов и т.д. Вторым фактором является чрезмерное использование. Этим фактором объясняется исчезновение многих пищевых, лекарственных и декоративных растений, деревьев с особенно ценной древесиной. Охрана редких и исчезающих видов растений включает несколько основных способов. Первый путь – юридический - это создание соответствующих законов, запрещающих использование редких видов. Важным условием его эффективности является практическое выполнение законов и наличие адекватных методов контроля. В реальности пока в какой-то степени контролируется использование лишь немногих, наиболее хозяйственно ценных видов, причем обычно не являющихся особой редкостью. Второй подход к охране растительных ресурсов – это создание искусственно культивируемых популяций в пределах ботанических садов и других научных учреждений. Здесь растения могут поддерживаться в культуре неопределенно долго, такие популяции будут являться необходимым резервом. Известно несколько фактов, когда растения, уже не встречающиеся в дикой природе, были сохранены именно путем искусственного культивирования.