2. How far are wc from an optical computer?

 

EUROPE LEADS RESEARCH IN OPTICAL COMPUTING

Until now, the switches inside computers have been electronic. European scientists are going to demonstrate the world's first optical computer. This demonstration will come 22 years after the theory behind optical computers was first predicted by researchers from the computer company IBM. However, there is still a large gap between what theoretical physicists believe can be done, and what electronic engineers know is possible.

In theory, optical switches leave their electronical counterparts standing. It is like comparing the speed of light with the speed of electricity. Optical switches are so fast and yet so small that an optical device of one square centimetre can resolve I ()7 separate spots of light and each can be switched on and off at a speed of 30 nanoseconds. This means that an optical device one square centimetre in area could, in theory at least, handle 3 x lO14 bits per second. This rate is equivalent to everybody in the world having a telephone conversation at the same time.

The optical switch works on the principle of optical "bistability". Usually, when a beam of light is passed through a transparent material, the relationship between the intensities of light entering and the light leaving is linear. However, under certain circumstances a non-linear relationship occurs. A small increase in the intensity of light entering the material leads to a much greater increase in the intensity of light leaving the material.

In optical switches, the material is placed inside a resonant cavity. In practice, this means that the edges of the material arc highly polished and parallel to each other. With such materials some of the light entering becomes "trapped" inside as it bounces back and forth against each polished surface. In other words, it resonates. This changes the refractive index of the material, with the result that for a given intensity of light entering the switch there are two possible intensities of light leaving it.

In other words, there is the equivalent to an "off" position and an "on" position because there arc two stable states and the material shows optical bistability. Up to now a switching speed of 1013 seconds has been achieved, although the power needed to generate this is in the kilowatt range. A speed of one nanosecond (109) is possible in the milliwatt power range.

 

 

TEXT 8

 

• Read the passage carefully and answer the question:

How many and what means of increasing computer speeds are mentioned in the text?

 

THE FUTURE OF COMPUTERS

During the past decade development work for extremely powerful and cost-effective computers has concentrated on new architectures. In place of "scalar" processors, the emphasis has moved towards "vector" and "parallel" processors, commonly referred to as "supercomputers". These machines are now in fairly widespread use in many branches of science.

Vectorization of quark field calculations in particle physics has improved performance by factors of ten or twenty compared with the traditional scalar algorithms.

Computers must still be programmed for every action they take, which is a great limitation. How quickly the programmer can tell it what to do becomes a major drag on computer speeds. The time lag can be shortened by linking up different computers and designing more efficient devices to jam information in and pull it out ofthe machine, but the basic limitation of the step-by-step program remains.

A means around this roadblock is called parallel processing. Instead of solving a problem by following step-by-stcp instructions ofthe program the arithmetic and memory units will break the main problem down into a number of smaller problems that will be solved simultaneously. Parallel processing was introduced into the fourth generation computer called 1LLI AC IV named forthe University of Illinois, where it was designed.

The incredibly rapid speeds we arc approaching will be of little value without a corresponding increase in the speed with which we can get at the computer-generated information. One new approach, called graphics, uses the cathode-ray tube — the picture tube of your TV set — to display the information pictorially. A light pen — actually an electronic pointer — can be touched to the screen, and conversation between man and machine can be accomplished. For example, the computer can flash a series of options on its screen. The scientist selects the one he wants by touching it with a light pen. The great advantage of these so-called graphic computers is in solving design problems and in coping with any trial-and-crror situation.

The graphic computer offers the most flexible means of communication between man and machine yet developed. For example, the designer can draw a car roof on the screen with his light pen. The computer will do the mathematics required to straighten out the lines and, in effect, present a draftman's version of the designer's idea. The computer will then offer a variety of options to the designer— "front view", "rear view", "cross section", and so on. All the designer needs to do is to touch his light pen to the appropriate choice, and the computer does the rest. Similarly, the designer can circle any part of the drawing on the screen with his pen and request a blow-up — a large-scale drawing of just that part he has circled.

The end product of this man-machine design team is not a series of drawings on paper but a set of equations that precisely define every point of design. Eventually, these symbols will be fed to the production line machinery, which will translate the symbols into steel and glass forms of automobiles.

• What is your idea of computers-translators? Is the problem feasible today or not? Read the following passage and say whether the author is optimistic or sceptical about it? Find the facts to prove your idea.

 

COMPUTERS-TRANSLATORS

Foreign-language translation may prove to be just a bit more than computer can handle. From the Tower of Babel (вавилонское столпотворение) on there have been countless examples of man's inability to understand man. What hope is there then for a machine to understand man, or even another machine? Machines translators would be an enormous boon (благо), especially to science and technology. A machine translator would obviously be a great aid.

In the 1980s a machine was developed that can optically scan the written characters and print out the translation. It has a program that translates Chinese into English and English into Chinese. At a press demonstration the programmer asked for a phrase to translate and a reporter said: "Out of sight, out of mind". The phrase was dutifully fed into the computer, which replied by printing out a string of Chinese characters. "There," said the programmer, "that means 'out of sight, out of mind'."

The reporter was sceptical. " I don't know Chinese and I don't know that that means 'out of sight, out of mind'."

"Well," replied the engineer, "it's really quite simple. We'll ask the other program to translate the Chinese into English."

And so once again a string of characters, this time Chinese, was fed into the computer. The translation was typed out almost immediately and it read: "invisible idiot".

In order to make communication between man and machine as painless and easy as possible, the computer is being taught not only to speak but also to listen. The Autonetics Corporation has built a system completed with audio analysers and all of the complex electronics needed to give a computer "ears" that will actually hear the words spoken into its microphone. The vocabulary is still limited.

During a demonstration, the engineer spoke slowly and distinctly a handful ofthe computer's words, and the latter dutifully typed them back. But on one word it failed. While counting "one, two, three," the computer typed back, "one, two, four." Whereupon the demonstrator snapped "idiot," and the computer, in a veritable machine version of British aplomb, calmly replied, "Not in vocabulary."

• Read the passage carefully. Describe the design and operation of a synchrotron (see the figure) on p. 167.

 

THE NEXT GENERATION OF PARTICLE ACCELERATORS

The limit to the maximum practical energy of a linear accelerator is the cost of the thousands of accelerator cavities and their associated radio-frequency power supplies. The way to avoid that cost is to employ only a few cavities but to make each particle passthrough them many times. Undcrthe influence of a magnetic field an electrically charged particle follows a curved trajectory. By arranging many magnets in a ring the particle can be made to follow a circular orbit, or any other closed curve. A bunch or cluster of particles can circle the ring several million times, passing through the radio-frequency cavities and gaining energy on each revolution. An accelerator built in this way is called a synchrotron.

All the large new accelerators that are now planned or under construction are synchrotrons. It is therefore worthwhile to consider their operation in somewhat greater detail. The magnets that make up the ring are of two kinds. The dipole magnets, which have two poles (one north and one south), generate a uniform magnetic field; they accomplish the bending ofthe particle trajectories. Quadruple magnets, which give rise to a field with two north poles and two south, focus them into a narrower beam, acting much like lenses. Interspersed among the magnets are the radio-frequency cavities, where the actual acceleration takes place. Specialized magnctsand electrodes must also be provided for injecting the particles into the ring and for extracting them from it.

The synchrotron operates in cycles. When a bunch of particles is first injected, the fields of the bending magnets are adjusted so that the particles precisely follow the curvature of the vacuum tube. As the energy of the particles increases on each revolution the field strength in the bending magnets must also be smoothly increased. When the maximum energy is reached, the beam is extracted; then the magnetic field is allowed to fall to its original level in preparation for the next bunch of particles. The accelerator is called a synchrotron because the particles automatically synchronize their motion with the rising magnetic field and the rising frequency of the accelerating voltage.

The highest energies are not attempted with a single machine; instead, several machines arc lined up in series. Each one augments the particle energy by a factor of 10 or even 100, then passes the beam on to the next accelerator in the sequence. In several instances older accelerators serve as injectors or preliminary stages for newer and for more powerful machines.

In a proton accelerator the first stage is most often a device ofthe kind built in 1928 by John D. Cockcroft and Ernest T.S. Walton at the Cavendish Laboratory ofthe University of Cambridge. It is a large transformer and rectifier that generates a potential of about a million volts between an inner electrode and an outer shell. Protons, obtained by ionizing hydrogen atoms, arc released at the inner electrode; when they emerge (through a hole in the shell), they have an energy of about 1 McV.

The next stage is often a linac, which typically raises the energy per proton to 50 or even 200 Mev. From the linac the protons can be injected into a synchrotron, which may be the final link in the chain or may serve merely to boost the energy ofthe protons for injection into a larger synchrotron.

 

PEP STORAGE RING

SPEAR

NEUTRINO MESON


 


STORAGE RING

• Read the passage carefully and find arguments to prove that construction of a Tevatron is a very difficult task even with the present day technology.

 

TEVATRON

Building the Tevatron has turned out to be a challenging task even today. The most obvious problem is that of cooling almost 1,000 magnets, strung out over 4.5 degrees Kelvin, the temperature where the special conductors of the magnet windings lose all resistance to the flow of electricity. In order to maintain that temperature a river of liquid helium is pumped through the ring. Twenty-four small refrigeration plants are spaced around the tunnel, and the central helium liquefler is the largest in the world, with a capacity of 4,000 liters per hour.

The windings in the magnets are formed of a niobium-titanium alloy embedded in a copper mat rix. Almost 19,000 miles of this cable will be required to complete the ring. At maximum field strength the superconductors will carry a current of 4,600 amperes, and when a magnet is "quenched", or loses the superconducting property, the energy stored in the field (about half a million joules per magnet) must be dissipated without destroying the windings.

A particularly taxing problem has been the need to maintain the uniformity ofthe magnetic field to an accuracy of better than one part in 1,000. Because the windings are immersed in their own field they are subjected to a reactive force of about a ton per linear inch. The coils cannot be allowed to move even a thousandth of an inch, however, because the movement would distort the field and might also give rise to too much frictional heat. The windings are immobilized by laminated collars of stainless steel. The alignment of the magnets is also complicated by thermal contraction when the ring is cooled to its operating temperature; a magnet six meters long contracts by about two centimeters.

It is worthwhile pausing to consider just how much energy 1 TeV per proton is. In units more commonly applied to macroscopic objects, a 1 -TeV particle has an energy of 1.6 ergs, which is roughly the kinetic energy of a flying mosquito. At full intensity the Tevatron will accelerate 5xl013 protons at a time, which will give the total beam an energy of eight million joules. That is comparable to the energy of a 100-pound artillery shell. If the beam should evergo out of control, it could melt the walls of the vacuum chamber and destroy the surrounding magnets; obviously such an accident must be avoided.

When the particles in a synchrotron have reached their full energy, they are nudged out of their orbit by a special magnet and deflected into an external beam line. Eventually, they strike a target. Interactions of the protons with

the target can be studied directly, and it is also possible to create beams of secondary particles knocked out of the target. There are separate areas for experiments with protons (the primary particles), with mesons (particles of intermediate mass, such as the pion), with neutrinos and muons, and with photons.

 

 

TEXT 12

 

• Gamma-Ray-Line Astronomy is a young science. Skim the passage rapidly (3 min.) and find facts concerning its origin, age and field of research. Reproduce the passage using the diagram on p. 170.

 

GAMMA-RAY-LINE ASTRONOMY

The nature ofthe universe has been deduced almost entirely from the photons, or quanta of electromagnetic energy, that arrive in the vicinity of the earth. Until half a century ago astronomers could detect only photons with energies of between 1.5 and 3.5 electron volts: the photons of visible light. Then they began to extend the photon energy range downward into parts of the infrared and radio regions of the electromagnetic spectrum and upward into the near ultraviolet. With the advent of rockets, high-altitude balloons and artificial satellites they were able to extend it much farther upward to the energy range of photons that cannot penetrate the earth's atmosphere: the photons of the far ultraviolet, X-rays and gamma rays.

Gamma rays are the most energetic form of electromagnetic radiation; the energy of their photons is measured in millions of electron volts (MeV), and in principle it has no upper limit. Gamma-ray photons from space were first detected some two decades ago. The early detectors simply recorded the arrival ofthe photons without being able to analyse their energies, as the photons of light are analysed into spectral lines by a spectrograph. Now, however, instruments have been developed that can detect gamma-ray spectral lines. They are beginning to yield information on the high-energy processes and objects that command the attention of modern astronomers, such as supernovas, neutron stars and phenomena at the center of galaxies.

Whereas the lines in the optical spectrum arise from transitions between the energy levels of electrons in atoms, lines in the gamma-ray spectrum arise from transitions between the energy levels of atomic nuclei.

In the eight years that have passed since those first observations were made several research grciips have been flying gamma-ray telescopes mostly on balloons but sometimes in satellites, in attempts to raise the instruments above nearly all ofthe earth's'atmospherc and detect gamma-ray lines of astrophysical origin. The field is still in its infancy.


TEXT 13

 

• Read the passage and give a title to each paragraph.

 

PERSONAL COMPUTERS

There has been talk of a "computer revolution" ever since the electronics industry learned in the late 1950'sto inscribe miniature electronic circuits on a chip of silicon. What has been witnessed so far has been a steady, albeit remarkably speedy, evolution. The evolution of the small personal computer followed, perhaps inevitably, from the advent ofthe microprocessor. It was in 1971 that the Intel Corpo ration succeeded in inscribing all the elements of a central processing unit on a single integrated-circuit chip. That first microprocessor had only a four-bit word size, but within a year Intel produced an eight-bit processor and in 1974 there was an improved version, the Intel 8080. In 1975, a device flexible enough to be considered the first commercially available personal computer was developed by M ITS, Inc. Now, however, with the proliferation of personal computers the way may indeed be open for a true revolution in how business is conducted, in how people organize their personal affairs and perhaps even in how people think.

A computer is essentially a machine that receives, stores, manipulates and communicates information. It does so by breaking a task down into logical operations that can be carried out on binary numbers — strings of 0's and 1 's — and doing hundreds of thousands or millions of such operations per second. At the heart of the computer is the central processing unit, which performs the basic arithmetic and logic functions and supervises the operation of the entire system. In a personal computerthe central processing unit is a microprocessor: a single integrated circuit on a chip of silicon that is typically about a quarter of an inch on a side. Othersilicon chips constitute the computer's primary memory, where both instructions and data can be stored. Still other chips govern the input and output of data and carry out control operations. The chips are mounted on a heavy plastic board; a printed pattern of conductors interconnects the chips and supplies them with power. The board is enclosed in a cabinet; in some instances there are several boards.

Two major determinants of the computational power of a microprocessor arc its word size, which governs the "width" of the computer's data path, and the frequency of its electronic clock, which synchronizes the computer's operations. The trend in microprocessors is toward a larger word size and a higher frequency. As the word size increases, an operation can be completed in fewer machine cycles; as the frequency increases, there arc more cycles per second. In general, a larger word size also brings the ability to access a larger volume of memory. The first generation of true personal computers had eight-bit microprocessors, then 16-bit ones and the most recently introduced systems have 32-bit microprocessor chips. As for the clock frequency, the trend has been from one megahertz (one million cycles pcrsccond) some ten years ago to 10 megahertz or more today.

Information is entered into the computer by means of a keyboard or is transferred into it from secondary storage on magnetic tapes or disks. The computer's output is displayed on a screen, cither the computer's own cathode-ray tube, called a monitor, or an ordinary television screen. The output called a modem (for modulator-demodulator) can be attached to convert the computer's digital signals into signals for transmission over telephone lines.

The chips and other electronic elements and the various peripheral devices constitute the computer's hardware. The hardware can do nothing by itself; it requires the array of programs, or instructions, collectively called software. The core of the software isan "operating system" that controlsthe computer's operations and manages the flow of information. The operating system mediates between the machine and the human operator and between the machine and an "application" program that enables the eomputerto perform a specific task: solving a differential equation, calculating a payroll or editing a letter. Programs are ordinarily stored in secondary-memory media and arc read into the primary memory as they are needed for a particular application.

 

 

TEXT 14

 

• Read the passage and find answers to the following questions:

/. In what units is the memory capacity of a computer measured? 2. How many and what types of memory are discussed in the text? J. What are their advantages and drawbacks?

MEMORY

There are two kinds of primary memory: read-only memory (ROM) and random-access memory (RAM). Read-only memory is for information that is "written in" at the factory and is to be stored permanently. It cannot be altered. For a single-application computer such as a word processor the information in ROM might include the application program. In the case of a versatile personal computer it would include at least the most fundamental of the "system programs", those that get a computer going when it is turned on or interpret a keystroke on the keyboard or cause a file stored in the computer to be printed. As the cost of ROM drops there has been a tendency among manufacturers to include more and more system programs in ROM rather than on secondary-storage media.

Random-access memory is also called read/write memory: new information can be written in and read out as often as it is needed. RAM chips store information that is changed from time to time, including both programs and data. For example, a program for a particular information is read into RAM from a secondary storage disk; once the program is in RAM its instructions are available to the microprocessor. A RAM chip holds information in a repetitive array of microelectronic "cells", each cell storing one bit. The density of commercially available memory chips has increased by a factor of 64 over the past decade and by 1984 the 256-kilobit chip was widely available.

Even though the individual memory chip is an array of bits, information is generally transferred into and out primary memory in the form of bytes, and the memory capacity of the computer is measured in bytes. A typical personal computer comes with a RAM capacity of between 16 and 64 kilobytes, which can be expanded by the addition of extra memory boards, or modules. In general it is a good rule to buy a system that has at least enough memory to accomodate the largest application program one expects to execute. Most off-the-shelf program packages carry an indication of the memory required.

The standard medium for secondary storage is the floppy disk: a flexible disk of Mylar plastic now either 5 1/4 or eight inches in diameter, coated on one side or both sides with a magnetic material. Information is stored in concentric tracks of minute magnetized regions; changes in the direction of magnetization represent binary O's or 1 's. The information is written onto the disk and retrieved from it by a recording head that is moved radially across the spinning disk to a particulartrack. The track in turn is divided into a numberof sectors, and as a rule information is written or read one sectorat a time. Depending on the particular format there arc between eight and 26 sectors per track and each sector holds from 128 to 512 bytes of data. The total storage capacity of a floppy disk varies according to the density of the data stored along a track (as high as 7,000 bits per inch), the density of the concentric tracks (as high as 150 tracks per radial inch) and the number of segments into which each track is divided. Most floppy disks now have a capacity of from 125 to 500 kilobytes; disks of higher density arc beginning to be available.

A more expensive alternative to the floppy disk is the Winchester disk. A personal-computer Winchester disk unit can have a capacity of from five to 50 megabytes (millions of bytes) and it can transfer data faster than a floppy disk. On the other hand, the Winchester disk is permanently sealed in the drive unit, whereas a floppy disk can be removed from the drive and replaced by a fresh disk.

A simpler, less expensive secondary-memory medium is the audio magnetic-tape cassette. One cassette can store about as much information as a relatively low-capacity floppy disk. The access time to a particular address, or storage location, is much longerfortapc than it is fordisk because the speed ofthe tape is much lower than that of a disk and because the information is a single linear sequence.

 

TEXT 15

 

• Read the passage carefully and say what software means arc described in it.

 

SOFTWARE

Although the hardware of a computer ultimately determines its capacity for storing and processing information, the user seldom has occasion to deal with the hardware directly. A hierarchy of programs, which together constitute the software of the computer, intervenes between the user and the hardware.

The part of the software that is most closely associated with the hardware is the operating system. To understand the kind of tasks done by the operating system, consider the sequence of steps that must be taken to transfer a file of data from the primary memory to disk storage. It is first necessary to make certain there is enough space available on the disk to hold the entire file. Other files might have to be deleted in order to assemble enough contiguous blank sectors. For the transfer itself sequential portions ofthe file must be called up from the primary memory and combined with "housekeeping" information to form a block of data that will exactly fill a sector. Each block must be assigned a sector address and transmitted to the disk. Numbers called checksums that allow errors in storage or transmission to be detected and sometimes corrected must be calculated. Finally, some record must be kept of where the file of information has been stored.

If all these tasks had to be done under the direct supervision of the user, the storage ofinformation in a computer would not be worth the trouble. Actually, the entire procedure can be handled by the operating system; the user merely issues a single command, such as "Save file". When the information in the file is needed again, an analogous command (perhaps "Load file") begins a sequence of events in which the operating system recovers the file from the disk and restores it to the primary memory.

In most instances an application program is written to be executed in conjunction with a particular operating system. On the other hand, there may be versions of an operating system for several different computers. Ideally, then, the same application program could be run on various computers, provided they all had the same operating system; in practice some modification is often necessary. The microprocessor recognizes a limited repertory of instructions, each of which must be presented as a pattern of binary digits. For example, one pattern might tell the processor to load a value from the primary memory into the internal register called an accumulator and another pattern might tell the machine to add two numbers already present in the accumulator. It is possible to write a program in this "machine language", but the process is tedious and likely to result in many errors.

The next-higher level of abstraction is an "assembly" language, in which symbols and words that are more easily remembered replace the patterns of binary digits. The instruction to load the accumulator might be represented LOADA and the instruction to add the contents of the accumulator might be simply ADD. A program called an assembler recognizes each such mnemonic instruction and translates it into the corresponding binary pattern. In some assembly languages an entire sequence of instructions can be defined and called up by name. A program written in assembly language, however, must still specify individually each operation to be carried out by the processor; furthermore, the programmer may also have to keep track of where in the machine each instruction and each item of data is stored.

A high-level language relieves the programmer of having to adapt a procedure to the instruction set of the processor and to take into account the detailed configuration of the hardware. Two quantities to be added can simply be given names, such as X and Y. Instead of telling the processor where in primary memory to find the values to be added, the programmer specifies the operation itself, perhaps in the form X+Y. The program, having kept a record of the location ofthe two named variables, generates a sequence of instructions in machine language that causes the values to be loaded into the accumulator and added.

 

TEXT 16

 

• Skim the passage and answer the questions:

/. What high-level languages are mentioned in the text? 2. What is the choice of a language based on?

There are two broad classes of programs, called interpreters and compilers, that translate into machine code a program written in a higher language. A program written in an interpreted language is stored as a sequence of high-level commands. When the program is run, a second program (the interpreter itself) translates each command in turn into the appropriate sequence of machine-language instructions, which arc executed immediately. With a compiler the entire translation is completed before execution begins. An interpreter has the advantage that the result of each operation can be seen individually. A compiled program, on the other hand, generally runs much faster since the translation into machine language has already been done.

Fortran was one of the earliest high-level languages and is now available in several versions (or dialects). Fortran programs are compiled; their main applications are in the sciences and mathematics. The most widely employed high-level language for personal computers is Basic, which was developed in the 1960's by workers at Dartmouth College. Basic was originally intended as an introductory language for students of computer programming, but it is now employed for applications of all kinds. Most versions of Basic are interpreted. There are dozens of other high-level languages that can be executed by a minicomputer. The choice of a language fora particular program is often based on the nature of the problem being addressed; the language called Lisp, for example, is favoured by many investigators of artificial intelligence. Considerations of personal programming style also have an influence; the language Pascal has been gaining popularity in recent years because it is said to encourage the writing of programs whose underlying structure is clear and can be readily understood.

 

TEXT 17

• Examine the output media presented in the scheme below, then read the passage and say which of them are mentioned in the text.

 


output

 

manual


> printed

voice (speech)

monitors

 

TV screen

■> dot-matrix


 

thermal

typewriter —► daisy-wheel

OUTPUT

The primary output medium for a personal computer is a visual display, usually on a cathode-ray tube: either a monitor or the purchaser's own television screen. Flat-panel displays that exploit liquid-crystal or gas-discharge technology are beginning to be competitive, particularly for small, portable systems. The character images needed for the display of text arc stored as patterns of dots in a special ROM called a character generator. The clarity of the text depends on the number of dots employed in forming each character. A typical monitor can display 24 lines of text, each line of which has a maximum of 80 characters.

The display of graphic images, whether they are engineering drawings, graphs or moving targets in a video game, calls for complex software and for large amounts of memory. A detailed drawing or a smooth curve on a graph requires a high-resolution image. Resolution is determined by the number of pixels (picture elements) that can be addressed by the computer. A 280-by-192-pixel image in black and white fills more than 50 kilobits of RAM capacity, whereas a 128-by-48 image needs only about six kilobits. Many personal computers can generate images in colour, which can raise the memory requirement by a factor of four or more. A high-resolution image, particularly one in colour, can be displayed on a monitor.

For many purposes a printed copy of the computers output is desirable. There arc a number of different kinds of printer, which vary widely in price, speed and the quality ofthe text they turn out. Thermal printers, which cost less than $ 500, burn an image into a special paper at a rate of some 50 characters per second. Dot-matrix printers cost between $ 400 and $ 1,500 and can be very fast: as many as 200 characters per second. An array of from five to 18 tiny wires is swept across the paper. Signals from the computer drive the wires against the inked ribbon, leaving a pattern of dots on the paper. The quality ofthe characters thus formed depends largely on the size of the dot matrix available for each character; the array of dots is commonly either five by seven or seven by nine. With suitable control programs and enough memory capacity the dot-matrix printer can generate images in black and white or in colour.

Most thermal and dot-matrix printers generate text that is readable but hardly elegant. "Letterquality" printing calls for more expensive devices more closely related to a typewriter. One such device is the daisy-wheel printer, which costs at least $ 750 and can print up to 55 characters per second. The printing head is a rotating hub with 96 radial arms or more, each arm carrying a letter or other character. As the daisy wheel moves across the paper, signals from the computer spin the wheel and actuate a hammer that drives the proper arm against the inking ribbon.

• Skim the passage and answer the following questions:

/. Where is the machine applied?

2. Does it really have animal instincts?

3. What rules provide these instincts?

 

A MACHINE WITH AN INSTINCT FOR SURVIVAL

A scientist from Boston, Massachusetts, claims to have built the first commercial machine endowed with instincts, or common sense, of an animal. Such a machine is the ultimate goal of scientists working to give computers artificial intelligence. It is also a key development if such systems arc to be applied usefully.

Regardless of how clever a computer is at guiding an airoplane, for example, it could still crash the plane if somebody feeds it incorrect information. This is because the airoplane's software does not contain the "knowledge" that crashing is undesirable.

Ed Fredkin, a former director of the Laboratory for Computer Science at the Massachusetts Institute of Technology, aims to produce computers whose design is governed by this basic, but overriding concept of self-preservation. He describes this as giving the computer "machine instinct".

 

TEXT 19

 

• Read the text and give your opinion on the problem.

 

oddity n странность, чудаковатость gauge [geidsJ v измерять, проверять размер fluke lflu:k] n счастливая случайность sift v просеивать

ironclad а жесткий, твердый, нерушимый

 

ARE THERE FINAL INDIVISIBLE CONSTITUENTS OF MATTER?

Physicists are excited, once again, about a potential conflict with the Stan­dard Model of Particle Physics. Measurements ofthe behaviour of neutrinos, made by a team at the Fermilab in Batavia, Illinois, suggest that the Standard Model may misgauge the strength of one ofthe fundamental forces of nature. Although not conclusive, the results might signify an undiscovered particle or an experimental fluke.

The Fermilab experiment measured '9w ("theta-sub-w"), a quantity called the weak mixing angle. Although not an angle in the ordinary sense, 8w smells like one to a mathematician. Roughly speaking, it measures the relation between electromagnetic and weak forces: Different values of 0w yield different pictures about the relative strengths of the forces at different energies.

Unlike a similar-sounding quantity called the neutrino mixing angle, which determines the properties of neutrinos {Science, 2 November, p. 987) Ow measures a fundamental force of nature, something that is fully accounted for in the Standard Model.

So, when the Fermilab researchers measured 0w using neutrinos produced by the Tevatron accelerator, they didn't expect to see anything unusual. The Tevatron produced powerful protons, then slammed them into a beryllium-oxide target, producing kaons and pions with various charges. Using magnets, the scientists sifted these particles, picking out varieties that would decay and produce either neutrinos or antineutrinos. They then compared how the resulting neutrinos and antineutrinos interacted with a 700-ton steel detector. The neutrinos and antineutrinos have different spin states and thus arc affected differently by the weak force-and 6w. By comparing the neutrinos behavior with that ofthe antineutrinos, the team figured out the size of 0w.

The result surprised them. The measured value of 0w disagreed with what the Standard Model predicts by three standard deviations — "three sigma". "A three-sigma result is interesting; it gets people's attention," says Kevin McFarland, a physicist at the University of Rochester in New York state and member of the Fermilab team.

In particle physics, such a result is usually considered provocative but not ironclad. But McFarland is sanguine. "I spent the last 8 years of my career making one measurement," he says, and after thorough checking and recheckingthe conflict with the Standard Model remained.

If real, the anomaly might be caused by an undiscovered particle such as a hypothetical new carrier of the weak force called Z'("Z- prime"), says Jens Erler, a physicist at the University of Pennsylvania in Philadelphia. "The [Fermilabl experiment is not explained by Z', but helped," he says. When combined with another recent intriguing but not inconclusive result in atomic physics, says Erler, it is "almost crying forZ'."

But doubts will remain until new experiments can shed more light on the situation. "Three sigma can easily be a fluke," says Erler. "But we take it seriously enough to have a really close look."

Science, 16 November 2001

VOCABULARY

СОКРАЩЕНИЯ

n — noun — существительное v — verb — глагол a — adjective — прилагательное adv — adverb — наречие

pron — pronoun — местоимение cj — conjunction — союз пит — numeral — числительное prep — preposition — предлог

 

UNIT 1

abundant lo'bAiidantl а имеющийся

в изобилии afford [a'foid j v (быть в состоянии)

позволить себе annihilate [o'naialcitj v уничтожать article ['a;tiki] n предмет (торговли) assault |a'so:lt| n нападение, атака,

штурм

augment [o:g'mentJ v увеличивать(ся);

усиливать(ся) avalanche I'aevolanf] n лавина bind I'bamd] v связывать blanket ['blterjkit| v покрывать

(одеилом) blessing I'blcsirjJ n благословение blueprint I'blutpnnt] n наметка; проект,

план

caution ('ko:jh[ n осторожность

challenge |'tjas1ind3] n сложная задача, проблема; вызов; v бросать вызов

clothe [kloudj уодевать

community |k3'mju:niti] я 1. община; 2. thee, общество

conceive Iksn'srv] v постигать, понимать; представлять себе

concern [кэп'вэт] п забота, беспокой­ство

constellation [.knnsta'leijn] п созвездие

curse [ko:s] п проклятие

dazzle I'daezl] vослеплять блеском,

великолепием destiny ['destini] п судьба elaborate [i'la;b3nt| «тщательно

разработанный; сложный eliminate fI'hmmeit| уустранять,

исключать (from); ликвидировать endeavour |in'dcvo] п попытка;

старание

enterprise ['entapraiz] п I. предприя­тие; 2. предприимчивость, инициатива

exaggeration |ig,zaed33'rerjh] п преуве­личение

fate [feit] п судьба

feed ffi:d] упитать(ся), кормить(ся)

foresee [fb:'si:] v (foresaw, foreseen) предвидеть

harm [hu:m] n 1. вред, ущерб; 2. зло, обида

heap [hi:p| n груда, куча; v нагромож­дать; накапливать

goal [goul) n цель; задача

grasp [grasp) v охватить; понять

impact ['impasktl n толчок, импульс

inconceivable [.inkan'siivabl] а непости­жимый, невообразимый

incredible [in'kredibl] а неправдоподоб­ный, невероятный

innovation l.ina'veijhl n нововведение, новшество; новаторство

installation |,inst3'leijh| n установка; pi сооружение

mere [гшэ| а простой; merely adv только; просто

opinion [э'р1шэп1 я мнение; public о. общественное мнение

outcome fautkAm) п результат, исход

pay [per] v платить

plumb [pUm] v вскрывать; проникать

вглубь (тайны) poll Ipoul] п голосование price [praisj п цена prior ['ргаю] to prep до pursue [pa'sju:] v преследовать,

гнаться

root [ru:t] n корень; v пускать корни, укореняться

rush |глП vбросаться; мчаться, нестись

shake Lfcikj v (shook, shaken) трясти,

встряхивать slide [slid] v (slid) скользить target ['tcugit] n цель, мишень threaten |'0retn| v грозить, угрожать tool |tu:l| n 1. рабочий инструмент;

2. орудие trend [trend] n общее направление, тенденция; v отклоняться, скло­няться в каком-л. направлении truth [tru:G] п правда, истина virtually I'vartjugli] adv фактически,

в сущности vital [Vaitl] а жизненный; насущный,

существенный voyage ['vDiid3] п плавание, морское путешествие; v плавать, путеше­ствовать (по морю)

UNIT 2

ardour ['cuds] п жар, рвение, пыл avail [a'vcill п польза, выгода; v быть

полезным, выгодным; помогать conviction [kan'vikjhl п убеждение decay |di'kei] п разложение, распад;

упадок; v гнить, разлагаться;

приходить в упадок, распадаться decline [di'klain] п падение, упадок;

v приходить в упадок, ухудшаться;

уменьшаться, идти на убыль;

спадать

diminish ]di'miniTJ уумепьшать(ся); убавлять; ослаблять

drain [drein| v 1. дренировать, осушать; 2. спекать; опоражнивать

enforce [in'fas] v 1. оказывать давле­ние, принуждать; 2. усиливать

expense [iks'pens] п трата, расход; цена; at the expense of за счет чего-л., ценой чего-л.

haughty ['horti] а надменный, высоко­мерный

hostile |'hDstail| a (to) враждебный justice |'d3AStis] п справедливость misery I'mizori] п I. невзгода,

несчастье; страдание; 2. нищета,

бедность

missile I'misail | п ракета, реактивный снаряд

peevish |*p>i:viJ~J а сварливый, раздра­жительный

plague Ipleig] п 1. бедствие; бич; 2. неприятность; досада; 3. чума; v 1. насылать бедствие, мучить; 2. досаждать, беспокоить

prejudice |'pred3udis] п 1. предрассу­док; предубеждение; 2. ушерб

prevail [pn'veil] v I. преобладать, господствовать, превалировать;

2. превозмогать, одолевать;

3. быть распространенным
prevent [pn'vent] v 1. предотвращать,

предохранять, предупреждать; 2. мешать, препятствовать

pride |praid] п гордость

purify I'pjuanfai] v (of, from) очишать(ся) от чего-л.

resent fri'zcnt| v негодовать, возму­щаться; обижаться

reverse [ri'v3:s] а обратный, противо­положный; v перевертывать

slur [sla:] п пятно (парепутации)

snuff [sn\f] v нюхать

sweep [swi:p] узд. мести, подметать; чистить, прочищать

viable I'vaiabl] а жизнеспособный

waste |wcist| п отбросы, отходы; а лишний, ненужный; отработан­ный

weapon ['wepan] п оружие wisdom I'wizdam] п мудрость

UNIT 3

acid I'aesid] п кислота; nucleic а.

нуклеиновая кислота alarm [a'lcr.m] п сигнал тревоги; a. bell

набат, набатный колокол cancer I'kasnsa] п мед. рак carbon ]'ka:bon | п углерод cell |sel I « клетка compound I'kompaund] n смесь,

состав; соединение hole [houl] n дыра, дырка intensify [ln'tensifai] уусиливать(ся) intercept [,into'sept| v 1. перехватить; 2.

прервать, отрезать; преградить путь

melanoma [,те1э'поитэ| n опухоль

protein ['prouti:n| n белок

release |n'li:sj v I. (from) освобождать, избавлять; 2. отпускать; сбрасывать

repair [n'pto] учинить, ремонтиро­вать, исправлять

severe [si'vio] а строгий, суровый; жестокий; тяжелый

skin [skin] п кожа

spread [spred] v I. развертывать(ся), простирать(ся); 2. распростра­няться), разносить(ся)

 

UNIT 4

accompany [э'клтрлш] v сопровож­дать, сопугствовать aggregate ['tcgngitj п совокупность assume |a'sju:m] v предполагать,

допускать;syn. presume [pn'zju:m] assumption la'sAmpJn] n предположение clarify ['klaenfaij v вносить ясность coalesce [,kouo'les| vсрастаться,

объединяться coalescence [.kouo'lcsnsl n объедине­ние, смешение compose [кэт'рои/.| ^составлять confirm [кэпТэлп] v подтверждать,

утверждать confirmation l.konfo'meijon] n утвер­ждение, подтверждение conjecture | ksn'dsektjbj n догадка, предположение; v предполагать, гадать

contain Ikan'tein] v содержать в себе,

вмещать dimension |di'menJon] n измерение,

размеры, величина disperse [dis'pa:s| v распространять,

разбрасывать, рассеивать distribute |dis'tribju:t] v распределять,

разбрасывать distribution n распространение emerge [i'ni3:d,3| v появляться emergence Ii'mo:d3onsI n появление enormous |i'nsmos] а громадный,

огромный establish |is'tteblij] v основывать,

создавать, заложить

even а одинаковый, ровный,

на одном уровне evenly I'i.vonlij adv ровно, равномерно evidently ['evidontli] adv очевидно,

ясно

explode [iks'ploudj евзрывать(ся) explosion |iks'plou3an] n взрыв fraction I'fraekfon] n часть, доля multiple ['rriAltipl ] а многочисленный,

составной; мат. кратный origin ['Drid3in] n источник, начало original |3'rid3innlJ а первоначальный originate [s'rid^incitl v давать начало,

порождать, возникать (from, in) preoccupy |pri;'Dkjupai] v занять; syn.

occupy |'okjupai| reveal [n'vi:l] v открывать, показы­вать, обнаруживать select [si'lekt] v выбирать, отбирать

 

UNIT 5

attitude f'ajtitju:dj n позиция; отношение bind [baind| v (bound) связывать;

привязывать cluster I'kUstsJ n I. группа; 2. скопле­ние, сгусток; 3. концентрация compact Ikam'psekt] а компактный,

плотный; vсжимать, уплотнять deviate |'di:vieit] уотклоняться,

уклоняться diverge [dai'vsid^l v расходиться;

отклоняться, уклоняться flat |flaetj а плоский, ровный glue |glu:| п клей homogeneity (,h3moud33'ni:itij п

однородность insist [in'sist| v (on) 1. настаивать

на чём-л., настойчиво угверждать;

2. настойчиво требовать instant ['instant] п мгновение, момент;

а настоятельный; немедленный,

безотлагательный manifestation ^macnifes'teijn] п 1. про­явление; 2. манифестация obtain [sb'tem | v существовать; иметь

силу, быть действенным pronounced [pro'naunst| а резко

выраженный;ясный

shrink Lfnnk] v (shrank, shrunk) сокра­щаться; садиться (о материи)

smooth [smu.dj a 1. гладкий, ровный; 2. плавный, спокойный; v сглаживать

tight [tait] а плотный, компактный; сжатый

 

UNIT 6

abyss laTJis] п бездна, пучина

accumulate [a'kjuimjuleit] v накапли­ваться), аккумулировать(ся)

advantage |3d'va:ntid3] п преимуще­ство; выгода, польза

apparently [a'paerantli] adv очевидно, по-видимому

assert [a'sat] v 1. утверждать, заяв­лять; 2. отстаивать, защищать; доказывать

aware [a'wea] a predic сознающий; знающий, осведомленный; to be а. of знать, сознавать, отдавать себе полный отчет в чем-л.

blast [blast] п зд. взрыв

bubble [тмЫ] п 1. пузырь; 2. пузырек воздуха или газа (в жидкости)

catch [kaetf] v (caught) ловить, пой­мать, схватить; (up) 1. поднять, подхватить; 2. догнать; 3. прервать

cell [sel] п 1. ячейка; 2. клетка

cellular ['seljuta] а клеточный; ячеис­тый, сотообразный; пористый

collapse [ka'laeps] п 1. разрушение; 2. осадка, оседание; 3. заклепыва­ние (пузырьков жидкости); астро-физ. коллапс; v коллапсировать

comb [koum] п соты

compression [kam'prejh] п сжатие; уплотнение

conform [кэпТэ:т| усообразовать(ся); согласоваться); соответствовать

constituent [kan'stitjuant] п 1. состав­ляющий часть целого; 2. составная часть

conventional [ksn'venjsnal] а условно принятый, условный; общеприня­тый, обычный, обычного типа

destroy [di'stroi] v уничтожать, истреблять; разрушать

discrepancy [dis'krepansi] п 1. разногла­сие, противоречие; расхождение; 2. различие, несходство

dot [dDtj п 1. точка; 2. крошечная вещь

embed [im'bed] v встраивать, встав­лять, вводить, внедрять; погружать

entire [in'taiaj а 1. полный, совершен­ный; 2. целый, цельный, сплош­ной

ever ['evs] adv всегда; for е. навсегда; вечно

evolve [iVolv] v 1. развивать(ся), эволюционировать; 2. разрабаты­вать (теорию); 3. выделять (газы)

extent [ik'stent] п \. протяжение, размер; 2. степень, мера

flood [fUdj п поток; прилив; v затоп­лять, наводнять; хлынуть потоком, устремиться

honey ['Наш] п мел; h. comb соты

inevitable [in'evitsbl] а неизбежный, неминуемый

negligible |'neglid33bl] а незначитель­ный; пренебрежимо малый

persist [ps'sist] v упорствовать, настойчиво продолжать

pierce [pias] v 1. (through, into) пронзать, проникать; 2. прорываться, прохо­дить сквозь (что-л.); 3. разгадывать (тайну)

prolong [prs'brjj v продлить, продол­жить

universe ['jir.nivsisl п мир, вселенная; космос

UNIT 7

cease [sirs] v переставать, прекра­щаться); приостанавливать; without с. непрестанно

contraction [ksn'trsekfn] п сжатие, сужение; уплотнение, стягивание; уменьшение; упрочение; сокра­щение

damp [daemp| v демпфировать;

заглушать; амортизировать essence ['esns] п сущность, существо;

in е. по существу

evaporate [iVeepareil] v I. выпаривать, сгущать; 2. испарять(ся)

chaos I'keiDs] n хаос

inflate [in'fleit] v нааувать(ся); нака­чивать; вздувать(ся)

outburst ['autbast] n I. взрыв; 2. вспыш­ка, всплеск

reconcile I'reksnsail) ^примирять(ся); улаживать

relevant ['relivant] а уместный, относящийся к делу

resolution [,гегэ'1и:Гп] n 1. решение;

2. разрешение (проблемы); 3. разло-
жение на составные части, анализ

resolve [n'zolv) п решение; v 1. решать, принимать решение; 2. побуждать;

3. разрешать (сомнения и т.п.)
scarcely j'skessli] adv 1. едва, как толь-
ко; только что; 2. едва (не); едва ли,
вряд л и

seed [si:d] п I. семя, зерно; 2. зародыш, начало (чего-л.)

span [spaen] п I. (короткий) промежу­ток времени, период времени; 2. короткое расстояние

swallow ['swdIou] v глотать, проглаты­вать; s. up поглощать

transition [traen'zifan] п переход, перемещение

turnover ['torn.ouva] п I. оборот; 2. точка перехода

unravel [\n'raev3l| v 1. распутывать; 2. разгадывать; объяснять

UNIT 8

creature ['krr.tfa] п 1. создание, творение; 2. живое существо

despair [di'speo] п отчаяние, безна­дежность

encompass [in'kAmpssJ v окружать, заключать

eternal [i'ta:nl] а I. вечный; неизмен­ный; 2. беспрерывный, постоян­ный

outward ['auiwod] а I. внешний, наруж­ный, поверхностный; 2. направлен­ный наружу; 3. видимый

power I'pauo] п мат. степень; p. law степенной закон

startling ['sta:tlir)l а потрясающий,

поразительный surplus |'s3:pl3s] п излишек, остаток;

а излишний, избыточный

UNIT 9

ability [a'biliti] п способность

accident ['teksidant] п случай, авария

accidental [.seksi'dentl] о случайный

affect [o'fekt] v действовать, воздей­ствовать, влиять (на)

amount [a'mauntl п количество; v со-ста&тять, достигать, доходить до (to)

case п 1. случай; 2. дело

complete [k3m'pli:t| v заканчивать, за­вершать; а полный, законченный

completely [ksm'pliitliJ adv совершен­но, полностью

compound ['kompaund] n соединение; а составной, сложный

considerable [kan'sidorobll а значитель­ный, важный

develop [di'velsp] v (id.) проявлять

discover Idis'kAva] v узнавать, обнару­живать, открывать

discovery n открытие

effect [i'fektj n влияние (на), следствие, результат; in е. в действительности, в сущности

excitement [ik'saitrmnt] п возбуждение

external [ek'sO:nl| а наружный, вне­шний; syn. exterior [ek'stianol; ant. intrinsic [in'tnnsik] а внутренний; n внутренняя сторона, внутренность

invisible [in'vizsblj а невидимый, неза­метный; ant. visible видимый, явный

mysterious |mis'tioriDs] о таинствен­ный, непостижимый

mystery ['mistan] n тайна

opaque |ou'peik] а непрозрачный, • светонепроницаемый, темный

oxidation |,oksi'deiJon| n окисление

oxide ['oksaid] n окись, окисел

penetrate I'penitreit] v проникать внутрь; проходить, пронизывать

pitchblende ['pitjblend| яураний, урановая руда

property ('ргарэп] п свойство, количе­ство

pure [pjua| а чистый, беспримесный

rate n скорость, интенсивность; at a r. of... со скоростью, равной...

rest v находиться, оставаться

rule out v исключать

take into account учитывать, прини­мать во внимание

transform [transform] v преобразовы­вать, превращать

transformation превращение, преобразование

because of prep из-за, вследствие; syn. due to, owing to

UNIT 10

according (to)prep в соответствии с,

согласно, по accordingly adv соответственно;

в соответствии approach [a'proutf] п подход, метод;

v подходить, приближаться к artificial [.ati'fijsl] а искусственный attract [s'traekt] v притягивать capture п захват, улавливание;

v захватывать, улавливать chip off v отщеплять comprehensive [,kDmpn'hensiv]

а обширный, исчерпывающий eject [I'd^ekt] v испускать, выбрасывать ejection п испускание, выброс emission [I'mijbn] п эмиссия,

испускание, излучение emit [I'mit] v испускать, излучать excess [ik'ses] п избыток; а избыточ­ный, добавочный excessive [ik'sesiv] а избыточный fission [Tifn] п деление, расщепление;

у делиться, расщепляться fluid |'flu:rd] п текучая среда, жидкость, газ; а текучий, жидкий, газообразный hinder ['hinds] v мешать, препятство­вать

impact ['impsekt] п 1. удар, толчок, столкновение; 2. влияние, воздей­ствие

incidence ['insidons| п падение, наклон incident ['insidant] а зд. падающий

interpret [in't3:pnt| v объяснять, толковать

interpretation [inTsipn'teifonl п объяс­нение, толкование

issue I'isju:, tJu:| п (зд.) выпуск, издание

liberate I'libareitl у освобождать, выделять

liberation [.hba'reijn] п выделение, отдача, потеря, выход

oppose [э'роиг] у противопоставлять

opposing й противоположный

ordinary ['ardinri] а обычный, обыкно­венный, простой

particular [ps'tikjuls] а особый, определенный; in р. = particularly adv в частности, в особенности

possess [ps'zes] у обладать

previous I'prirvjas] а предыдущий, предшествующий

previously adv ранее, предварительно

projectile [pr3'd3ektail| n зд. налетаю­щая, бомбардирующая частица

ratio ['reijiou] пмат. отношение, пропорция

release [n'Ii;s] п освобождение, высвобождение; v выпускать

repulse [n'pAlsl vотталкивать; п отражение

repulsion [п'рл1/эп] п отталкивание; am. attraction [s'traekjbnj п притяжение

resolution [.rezo'lofnl п решение, разрешение

sample ['sampl] п образец, проба, выборка

split v расщеплять, раскалывать, разрушать

UNIT 11

accelerate [ak'selireit] уускорять(ся) agree [s'gri:] усогласовывать(ся);

совпадать agreement [s'griimsnt] n совпадение,

согласие

apart from кроме, помимо, не считая;

syn. in addition to attach [s'taetf] v присоединять,

закреплять bend v (bent) изгибать(ся) bulky ['b\lki] а большой, громоздкий

cloud chamber камера Вильсона

collide [ko'laid) v ст&чкиваться

collision [кэ'|1зэп| n столкновение

composite |'kDmpozit| а сложный, составной

consideration [ksn.sido'reijh] n сообра­жение, рассмотрение, обсужде­ние; to take into с. принимать во внимание

correspond [.kon'spDnd] v соответство­вать (with, to)

corresponding а соответственный

decay [di'kei] n распад, превращение; v распадаться

develop [di'vebp] v разрабатывать, конструировать

development [di'velapmant] n разработ­ка (теории)

establish [is'toeblij] vосновывать, создавать, устанавливать

exclude [ik'sklir.d] v исключать, не допускать; ant. include включать

exploration [ekspb'rerfsn] n исследо­вание

fine-grained а мелкозернистый;

высокодисперсный fringe [frmd3| n край, граница grain n зерно

humid |'hjii:mid| а влажный

instead [m'sted] adv вместо, взамен (of)

intermediate [,int3'mi:djot] а промежу­точный, средний

interrelation [intsri'leifon] n взаимоот­ношение, соотношение

interstellar [.inta'stels| space межзвезд­ное пространство

introduce [.intra'djirs] i> вводить, вставлять (into)

introduction [^ntrs'dAkJbnl n введение

outer ['auts] а внешний

predict [pn'dikt] v предсказывать

prediction n предсказание

presence I'prezns] присутствие, н&чичие

reach v достигать

sequence ['srkwsns] n последователь­ность, ряд, чередование; in s. порядок следования, ряд

similarй похожий, подобный, сходный

streak [stri:k| п полоска, прожилка stream п поток

subsequent ['sAbsikwantj а последующий surface ['sa:fis| п поверхность

due to из-за, вследствие; syn. owing to,

because of due а надлежащий: to be d. to быть

обу сл о вл е п п ы м, обу сл о вл и ва i ьс я

 

UNIT 12 achieve |o'tjlivj v достигать achievement п достижен ие afford la'fad] v позволять себе,

давать, предоставлять average ['sevand3] о средний cause [ky.z\ v вызывать, служить

причиной chain п цепь, цепочка; а цепной;

ch. reaction цепная реакция dilute |dai'lu:t] v разбавлять, разводить;

а разведенный, разбавленный,

слабый

except [ik'sept[prep за исключением,

кроме (for) former, the первый (из двух названных);

ant. latter, the второй, последний graphite I'grtefait] п графит include [in'klu:d] vвключать lose v (lost) терять loss n потеря

maintain [mein'tein] v поддерживать, сохранять, содержать в исправно­сти, обслуживать, эксплуатиро­вать; self-maintaining а самоподдер-живаюшийся

maintainance ['meintinsnsl п обслужи­вание, уход, содержание в исправ­ности, эксплуатация

mean v (meant) значить, означать

occur [э'кэ:] v случаться, происхо­дить; syn. take place

pile n 1. куча, груда, множество, масса; 2. ядерный реактор (atomic, nuclear p.)

purify ['pjusnfai] v очищать от чего-л. (of, from)

source [sd:s] n источник

succession [ssk'sejon] n последователь­ность, непрерывный ряд

successive |s3k'sesiv| а последующий, последовател ы i ы й

utilize ['julilaiz] v использовать

give rise to = to result in приводить к чему-л., давать что-то в результате

in question (лицо, вопрос) о котором идет речь;.у«. involved, concerned

UNIT 13

abrupt [s'brApt] а скачкообразный;

резкий; внезапный bang [Ьшп| n взрыв; big b. большой

взрыв

collide [ka'laidl v сталкиваться contemporary [kon'tempsreril a

1. современный; 2. одновременный
convince Ikon'vmsj vубеждать

dozen I'dAznl n 1. дюжина;

2. множество

drastic L'draestik] а решительный;

крутой (о мерах); d. changes

коренные изменения duplicate I'djir.plikeit] v 1. снимать

копию; 2. удваивать fairly [TmIi] adv довольно; сносно;

весьма

freeze [fri:z| v (froze, frozen) замерзать; морозить, замораживать

heaven ['hevn] n небо, небеса

identical [ai'dentikol] а тот же самый; одинаковый

immense [I'mens] о безмерный, необъятный; огромный

isolate ['aisaleit] v изолировать, отделять, обособлять

presume [pn'zjir.m] v 1. предполагать; считать доказанным; 2. upon (on) слишком полагаться на что-л.

primordial [prai'madisl] а изначаль­ный, исконный

rather |'га;5э] adv скорее, предпочти­тельнее, лучше; г. than а не

spontaneous [spon'teinjasl а самопро­извольный

stuff [sUf] п материал, вещество

yield [ji:ld] v производить; приносить, давать (плоды, урожай и т.д.)

UNIT 14

appropriate [a'proupnit] а соответству­ющий, подходящий, уместный

aptly ['aeptli] adv 1 ■ соответствующим, надлежащим образом; кстати; 2. быстро, легко, умело

breakthrough I'breikOru:] я достиже­ние, победа, эпохальное событие

ceramics [si'rEemiks] п керамика

conceivable [kan'siivobl] а постижимый, понятный, мыслимый, возможный

coolant ['ku:lont] п 1. охлаждающая среда, охлаждающая жидкость; 2. охладитель

costly I'kDstli] а 1. дорогой; 2. ценный

cushion |'ки:/(э)п] п полушка, упругое основание, прокладка

designate ['dezigneit] v 1. определять, устанавливать; 2. обозначать, называть

expensive [ik'spensiv] а дорогой, дорогостоящий

fission |'м/(э)п] п расщепление, распад

frigid [Tnd3id] а холодный

fusion ['0и:,з(э)п] п I. плавление, сплавление; 2. синтез, слияние

host [houst| п множество

immensely [I'mensli] adv безмерно, необъятно

implication [,impli'keij(3)n] п 1. вовлече­ние; 2. скрытый смысл, значение

incredible [m'kredibl] а 1. неправдопо­добный; 2. удивительный, неслы­ханный, потрясающий

involve [in'vDlv] v 1. включать в себя,
содержать; 2. влечь за собой,
вызывать '

liquefy f'likwifai] v превращаться) в жидкость

maintain [mein'tein] v 1. поддержи­вать, сохранять; 2. обслуживать

obstacle ['obstokl] п препятствие, помеха

occur [э'кэ:| v происходить, случать­ся, иметь место; встречаться; наблюдаться, присутствовать

гаге [геэ] а редкий, разреженный; редкостный, исключительный

reward [n'wadj n награда, вознаграж­дение, премия

stubborn l'sUbon| а упрямый, непо­датливый, упорный

stumble I'sumbll v I. спотыкаться; 2. запинаться; 3. случайно наты­каться

transition [traen'zij"(3)n, traen'sij(3)n] я процесс перехода из одного состояния в другое

vaporize [Veiparaiz] v I, выпаривать, испарять; 2. испарять(ся)

UNIT 15

apparent [a'paaront] a I. видимый, различимый; 2. явный, очевидный

coherence | ko(u)'hi3r(o)ns] я I. коге­рентность; 2. связность, последо­вательность

conventional [kon'venjanl] а обычный, привычный, общепринятый, традиционный, стандартный; удовлетворяющий техническим условиям

crucial l'kru:Jol] а 1. решающий; 2. критический

currently ['клг.-mtli] adv в данное время, в текущий момент

discard Jdis'kaid| v 1. отбрасывать, отвергать, отказываться; 2. брако­вать, списывать

encounter | in'kauntaj v 1. неожиданно встретить; 2. наталкиваться (на трудности и т.п.)

enhance |m'ha:ns| v 1. увеличивать, усиливать; 2. повышать

extension [ik'stenf(3)nl п I. растяжение, расширение, удлинение; 2. распро­странение, развертывание; 3. про­тяженность; 4. продолжение, доба­вочная часть, надставка

feature (ТгЛ|э| п I. особенность, черта; характерное свойство, признак; 2. микрообъект

gap я зазор, просвет, промежуток; щель, интервал; energy g. запре­щенная зона, энергетическая щель, ширина запрещенной зоны

glue [glu:] я клей

originate [3'nd3ineit] v I. давать начало, порождать, создавать; 2. брать на­чало, происходить

pair v спаривать

plasmon я плазмон (квант плазменных колебаний)

scope [skoup] п 1. пределы, рамки, границы; 2. масштаб, размах

share |/еэ] v разделять; делить; принимать участие, распределять

unravel |лп'гэеу(э)1] v 1. распуты­ваться); 2. разгадывать, объяснять

UNIT 16

alter ['эзЪ] v изменять(ся), менять(ся), переделывать

alternating ['Diltaneitirj] p.p. перемен­ный; а. current переменный ток

annihilate [a'naialeit] v уничтожать, отменять

annihilation |3,nai3'lei.fn] я аннигиля­ция, отмена

bond я связь; диффузионный слой

bonding я связь, соединение

complicate v усложнять

complicated ['kamplikeitid] а запутан­ный, сложный

conduct [кэпУлИ] v проводить

conductive [kan'dAktivj а проводящий

conductivity [,kondAk'tiviti] я удельная (электро)проводимость, электро­проводность

conductor я проводник; ant. insulator ['insjuleita] я изолятор

deficiency [di'fijansi] п недостаток, отсутствие; syn. lack [laek] п (of) отсутствие, недостаток

deficient а недостаточный, недостаю­щий, неполный

hole п дырка, отверстие; а дырочный

impurity [im'pjuariti] я примесь, загрязнение, включение

insulate v изолировать

interface ['intafeis] я граница раздела; а граничный, межфазный

junction fdjMikJsn] п соединение, стык, узел, переход (в полупровод­нике)

lattice ['laetis] я решетка

mobile |'moubaiI| а подвижный, движущийся

mobility [mou'bilm | n подвижность, мобильность; holem. дырочная подвижность

mutual I'mjirtjusl] а взаимный, общий, совместный

neighbour ['neibo] n сосед, соседний объект, соседняя часть

neighbouring а соседний

occupied а занятый; ant. vacant I'veiksntI свободный, вакантный

occupy I'DkjupaiJ v занимать, заполнять

prevent [pn'vent] v мешать, подавлять, препятствовать

proper ['ргэрэ] а I. собственный, в собственном смысле; 2. надлежа­щий, должный, соответствуюищй, подходя ший

rectification |,rektifi'keijn] п выпрямле­ние

rectifier/? выпрямитель rectify I'rektifai] v выпрямлять replace [n'pleis] v заменять replacement n замещение, замена reverse |nV3:s] v изменять на обратное,

реверсировать semiconductor l.semiksn'dAkts] n

полупроводник supply [so'plai ] v питать, подавать, доставлять, подводить; я питание, подача, снабжение thermal ['9э:тэ1] а термический, теп­ловой; th. agitation тепловое пере­мешивание, тепловое движение wire ['waio] п провод, проволока; v проводить

UNIT 17

alter ['э:Иэ] v 1. изменять, переделы­вать, менять; 2. видоизменять, вносить изменения

approximate [a'proksimit] (/приблизи­тельный, приблизительно точный

constraint [kon'streint] п 1. принужде­ние; 2. реакция связи

distinct [dis'tirjkt| а 1. ясный, явствен­ный, отчетливый; 2. определен­ный, явный

embrace | im'brcisj v включать, заклю­чать в себе, охватывать

exact |ig'zaaktj а I.точный; 2. строгий

except for [ ik'sept] prep за исключени­ем, кроме, если бы не

explicit | ik'splisit] о ясный, точный, определенный

familiar Ifs'miljal я близкий, хорошо знакомый

glance п: at a glance [ylu:ns| с первого взгляда

hadron ['haedron] яадрон, сильно взаи­модействующая (элементарная) ча­стица

integer I'mtidp] п целое число

intermediate [,into'mi:dJ3t| а промежу­точный, переходный; v замещать, переставлять, чередовать, обмени­ваться)

modest I'mDdist] а умеренный, небольшой, ограниченный

multiple [Wltipl] п кратное, кратное число, кратная величина

pattern |'paet(3)nj п фшура, картина, система полос; узор; образец, модель, форма; характеристика, диаграмма

perceive |p3'si:v| v понимать, осозна­вать, постигать; различать, оигушать, чувствовать

rather ['га:дэ| than скорее чем; а не

remarkably |n'ma:kobli] adv замеча­тельно, удивительно, необыкно­венно, в высшей степени

respect п: with respect to что касается, в отношении

responsible [ris'ponsobl] а ответствен­ный; надежный; достойный; важный

retain | n'tein | v сохранять, удерживать reverse |n'v3:s) v менять (на противо­положный), обращать, переворачи­вать

rotation [ro(u)'tci/(3)n] п вращение,

вращательное движение; поворот snowflake ['snoufleik | л снежинка spatial |'spei/(3)l| а пространственный stringent I'stnndpnt] а строгий, обязательный, точный

validity |va'hditi| n справедливость, правильность, действительность, применимость

UNIT 18

blank n техн. заготовка, болванка

designate I'dezigneitJ vопределять, обозначать, указывать

distinct jdis'tir>kt | а отдельный, отличный

diversity |dai'vo:siti| n разнообразие, многообразие, разнородность

embrace [im'brcis| v 1. обнимать; 2. охватывать

fit v 1. соответствовать, годиться, совпадать; 2. подгонять

gauge [geid3J п 1. мера, масштаб, размер, калибр; 2. измерительный прибор; зд. g. theory калибровоч­ные теории поля или градиентные полевые теории

incorporate [т'кл:рэгсК| v соеди­няться), объсдинять(ся)

intertwine |,intri'twain 1 v сплетать(ся), переплетаться)

invariant |in'veonnnt| п инвариант

lock [bk] п замок

perceive [pa'si:v| v воспринимать, понимать, осознавать, постигать

quark [kwa.k, kwD:k] п кварк

reveal [n'vi:l] v I. открывать; 2. показывать, обнаруживать

suffice |ss'fais] убыть достаточным, хватать

ultimately [Altimitli] adv в конечном счете, в конце концов

UNIT 19

accord [o'ko:d| п согласие, единство,

гармония alarming [o'lcumin | а тревожный,

волнующий apparently [o'pairontli) adv ятко,

очевидно, несомненно; видимо,

по-видимому arrange [3'remd3| v приводить

в порядок, располагать; размещать bear |Ьсэ| v (bore, borne) нести;

иметь, обладать

charm п очарование, шарм

constituent Iksn'stitjuont] п составная часть, элемент

conviction [kon'vikT(3)n] п убеждение, убежденность, взгляды

distinguish |dis'tirjgwif| v отличать, различать; отделять, разделять

entity |'entiti| п реальность; нечто объективно, реально существую­щее; объект, единица структуры

evidence ['evid(o)ns] п основание, данные, свидетельства, доказа­тельство; очевидность, явность

extend [iks'tend | у простираться, тянуться; расширять, удлинять, распространять

generation [^зепэ'ге1/(э)п| л поколение

indivisible [.mdi'vizabl] а неделимый, бесконечно малый

investment [m'vestmontJ п капиталов­ложение

justify ['d3AStifai] v оправдывать, находить оправдание, подтверж­дать

list п список

расе [peis] п скорость, темп, шаг preceding |pn'si:dirj] а предшествующий presumably [pn'zjirmabli] adv возможно,

вероятно prevail |pri'vei 1J v преобладать, быть

распространенным proliferation |ргэ,1гПэ'ге||"(э)п] п количе­ственный рост, распространение recognize ['rekagnaizj v 1. узнавать, опознавать; 2. осознавать;

3. выражать признание, пенить;

4. признавать

reconcile ['rekDnsail| v мирить, улажи­вать, приводить в соответствие, согласовывать

status I'steitosj п существующее положение, состояние

strangeness |'strcm(d)3nis| п странность

subsequent I'sAbsikwant | а 1. последую­щий, более поздний; 2. являющий­ся результатом чего-л.

subsequently ['sAbsikwontli] adv впос­ледствии, затем, потом

substantial [ssb'staDnfOlJ а существен­ный, важный, значительный

trouble [тглЫ] v I. тревожить, волно­вать; расстраивать; 2. беспокоить, мучить

worth [ws:G] п ценность, значение, достоинство

UNIT 20

accomplish [э'кэтр!]/] v выполнять, завершать

adjust [s'chy\st] v I. приводить в поря­док; 2. приспосабливать, подгонять; 3. регулировать, пробовать

attempt |3'tem(p)t] v пытаться, пробовать

augment [э-.g'mentj v увеличипать(ся), прибавлять(ся)

avoid [a'vDid] v избегать, сторониться, уклоняться

bend v (bent) гнуть(ся), изгибать(ся), наклонять, поворачивать

boost v подталкивать, стимулировать

bunch п связка, пучок, группа, сгусток

cavity ['kteviti] п 1. (замкнутая) полость; 2. (объемный) резонатор

chain [tjein] п цепь, цепочка; после­довательность; связь, ход

cluster ['kUstal п сгусток (частиц)', скопление, группа; пучок

curvature ['kaivatfsl п кривизна, изгиб

curve [ka:v| п кривая, характеристи­ческая кривая, график

emerge [I'morcfc] v появляться; выхо­дить (на поверхность); всплывать

employ [im'pbil v употреблять, использовать, применять

extract [ik'straekt] v I. извлекать, экстрагировать; 2. откачивать (газ)

gain п 1. усиление, коэффициент усиления; 2. выигрыш; приобре­тенное количество, приращение

inject [in'd3ekt| v инжектировать; вводить (частицы); впускать; впрыскивать, инъецировать; вдувать

inner [тпэ] а внутренний

intersperse l.ints'spsis] v разбрасывать, рассыпать, помещать, вкладывать что-л. в промежугки

linac |'1шэк] «линейный ускоритель

line up v строить, выстраивать в линию, в ряд; становиться, строиться, выстраиваться

link п звено, связующее звено, связь

make up v 1. образовывать; 2. завер­шать, оканчивать

merely ['miali ] adv только, просто, единственно

outer ['auta] а внешний, наружный

precisely Ipn'saisli] аауточно, опреде­ленно

preliminary [pn'lim(i)n3n | а предвари­тельный

raise [reizj v 1. поднимать; 2. повы­шать, увеличивать

rectifier ['rektifaial п выпрямитель; детектор

release [ri'li:s] v освобождать, выделять (энергию)

revolution |,rev3'lu:J(3)n] п вращение, обращение, оборот

sequence ['si:kwons] п последователь­ность, ряд; последствие, результат

shell п 1. оболочка; 2. снаряд

smoothly ['smu:61i| adv 1. гладко, ровно, плавно; 2. хорошо; благопо­лучно

strength [stregG] п I. сила; 2. напря­женность (поля); 3. прочность

supply [ss'plai] v питать, подавать, доставлять, снабжать

synchronize |'sinkronaiz| vсинхронизи­ровать

trajectory ['traed3ikt(3)n ] и траектория

CONTENTS

Part i. SCIENCE, TECHNOLOGICAL

progress and society.......... 4

Introductory unit............ 4

unit one............... 8

GRAMMAR: TH e passive voice

unittwo............... 15

GRAMMAR: модал ы1ы e глагол ы cperfectinfinitive

unitthree 25

сл4мшл: thecomplexsubject with the infinitive

Part ii. THE universe PUZZLE .. 31

unit four 31

GRAMMAR: functions ofthe infinitive

unit five 38

GRAMMAR: participle (formsand functions)

un it six 45

GRAMMAR: th e absolute participial construction

un IT seven............. 53

GRAMMAR: inversion

unit eight.............. 6 2

GRAMMAR: Tl ie subjunctive mood

Part iii. THE world of
subatomic particles........... 70

unitnine............... 70

GRAMMAR:the subjunctive mood

u nit ten .............. 77

GRAM MAR: GERUND

unit eleven ............. 84

GRAMMAR: gerund

u nit twelve............. 93

GRAMMAR: gerund

unitthirteen.............. 101

<7ft/1/w/w/l/f:gerund

Part IV. MODERN DISCOVERIES, THEORIES

AND TECHNOLOGIES..... 109

unit fourteen ............. 109

GRAMMAR: местом мен и e ONE

unit fifteen ............. 115

GRAMMAR: revision

un it sixteen............. 122

GRAMMAR: ti ie com plex obj ест with the infinitive

unit seventeen............. 130

GRAMMAR:7HE infinitive

unit eighteen ............. 136

GRAMMAR: глагол WOULD

un1tnineteen ............. 144

GRAMMAR:the absolute participial construction

umttwf.niy 150

GRAMMAR:.WOULD

в придаточных 11редложениях

SUPPLEMENTARY READING.. 156

text 1 ............... 156

text 2............... 156

text3................ 158

text 4............... 158

text 5............... 160

text 6............... 161

text 7............... 162

text 8............... 163

text 9............... 165

text 10............... 166

text 11............... 168

text 12............... 169

text 13............... 170

text 14............... 171

text 15............... 173

text 16............... 174

text 17............... 175

text 18............... 177

text 19............... 177

VOCABULARY.......... 179