Тема 5. Аналоговые измерительные приборы
5.1 Электромеханические измерительные приборы
5.1.1 Основные положения
Аналоговыми измерительными приборами называются приборы, показания которых являются непрерывной функцией изменений измеряемой величины. Аналоговые электромеханические приборы строятся по структурной схеме, представленной на (рис.5.1). Они состоят из измерительной цепи, измерительного механизма и отсчетного устройства.
Рисунок 5.1 – Структурная схема аналогового
электромеханического прибора
Измерительная цепь (ИЦ) содержит резисторы и другие элементы, необходимые для требуемого преобразования измеряемой величины.
Измерительный механизм (ИМ) состоит из подвижной и неподвижной частей. В зависимости от принципа преобразования электромагнитной энергии в энергию движения подвижной части механизма различают магнитоэлектрические, электромагнитные, электродинамические, электростатические и индукционные приборы.
Отсчетное устройство (ОУ) состоит из указателя (стрелочного или светового), связанного с подвижной частью прибора, и неподвижной шкалы, представляющей собой совокупность отметок, нанесенных на лицевой стороне (циферблате) прибора. Расстояние между двумя соседними отметками называется длиной деления или просто делением шкалы.
Цена деления, называемая также постоянной прибора, соответствует изменению измеряемой величины, вызывающему перемещение указателя на одно деление.
Уравнение (5.1) называется уравнением преобразования механизма прибора, оно связывает показания прибора со значением измеряемой величину, и характеризует свойства измерительного прибора в целом.
α = Мвр/W = φ(х,λ)/W, (5.1)
где α – угол поворота подвижной части; W – электрокинетическая сила; λ - величина, зависящая от параметров измерительного механизма.
5.1.2 Магнитоэлектрические приборы
В приборах магнитоэлектрической системы используется взаимодействие поля постоянного магнита с катушкой (рамкой), по которой протекает ток. Конструктивно измерительный механизм может быть выполнен либо с подвижным магнитом, либо с подвижной катушкой. На (рис.5.2) показана конструкция прибора с подвижной катушкой.
Рисунок 5.2 – Измерительный механизм МЭ прибора
Постоянный магнит 1, магнитопровод с полюсными наконечниками 2 и неподвижный сердечник 3 составляют магнитную систему механизма. В зазоре между полюсными наконечниками и сердечником создается сильное равномерное радиальное магнитное поле, в котором находится подвижная прямоугольная катушка (рамка) 4, намотанная медным или алюминиевым проводом на алюминиевом каркасе.
Уравнение преобразования можно получить, если подставить в формулу (5.1) выражение для вращающего момента Мвр, действующего на подвижную часть магнитоэлектрического механизма
α = (BwS/W)I = SI ∙ I, (5.2)
где B – магнитная индукция в воздушном зазоре; w – число витков рамки; S – ее площадь; I – ток, протекающий по рамке.
Коэффициент пропорциональности SI = BwS/W называется чувствительностью магнитоэлектрического механизма к току.
Из группы аналоговых приборов магнитоэлектрические приборы относятся к числу наиболее чувствительных и точных. Изменения температуры окружающей среды и внешние магнитные поля мало влияют на их работу. Для измерений в цепях переменного тока требуется предварительное преобразование переменного тока в постоянный.
Амперметры
Магнитоэлектрический механизм позволяет измерять малые постоянные токи, не превышающие 20-50 мА. Для того чтобы измерять большие токи, используют измерительные цепи, включающие в себя шунты, представляющие собой манганиновые резисторы, сопротивление которых во много раз меньше сопротивления рамки RА магнитоэлектрического измерительного механизма. Поэтому при включении шунта параллельно прибору (рис.5.3) основная часть измеряемого тока I проходит через шунт, а ток IА не превышает допустимого значения.
Рисунок 5.3 – Схема включения амперметра с шунтом
Отношение I/IА = n, показывающее, во сколько раз измеряемый ток превышает допустимое значение, называется коэффициентом шунтирования. Сопротивление шунта определяется как
Амперметры для измерения сравнительно небольших токов (до нескольких десятков ампер) имеют внутренние шунты, вмонтированные в корпус прибора. Измерение больших токов (до нескольких тысяч ампер) осуществляют при помощи наружных шунтов, которые имеют определенные номинальные падения напряжения (45, 60, 75, 100 и 300 мВ) и классы точности (0,02; 0,05; 0,1; 0,2; 0,5).
Вольтметры
Схема вольтметра магнитоэлектрической системы приведена (рис.5.4).
Рисунок 5.4 – Схема включения вольтметра
Добавочный резистор Rдоб, включенный последовательно с рамкой измерительного механизма, ограничивает ток полного отклонения I, протекающего через нее, до допустимых значений. При этом падение напряжения на рамке UV зависит от сопротивления рамки RV и обычно не должно превышать десятков милливольт. Остальная часть измеряемого напряжения U должна падать на добавочном сопротивлении. Если необходимо получить верхний предел измерения напряжения, в m раз превышающий значение UV, то необходимо включить добавочный резистор, сопротивление которого легко вычисляется по формуле
Rдоб = RV (m – 1).
Добавочные резисторы изготавливают из термостабильных материалов, например, из манганиновой проволоки. Они могут быть внутренними, встроенными в корпус прибора (при напряжениях до 600 В), и наружными (при напряжениях 600-1500 В).
Логометры
Приборы, в которых противодействующий момент создается не при помощи упругого элемента, а теми же электромагнитными силами, что и вращающий, называются логометрами. У логометров положение подвижной части определяется отношением двух токов. Логометры магнитоэлектрической системы (рис.5.5) имеют подвижную часть из двух жестко скрепленных между собой катушек 1 и 2 (рамок).
Рисунок 5.5 – Устройство логометра
Последние могут свободно вращаться в неравномерном поле постоянного магнита. Для создания неравномерного магнитного поля полюсным наконечникам, как и сердечнику, находящемуся между ними, придается особая форма. Отклонение указателя прибора равно
α = F(I1/I2). (5.3)
Логометры применяются для измерения сопротивления и других электрических величин. Основным достоинством логометрических приборов является независимость их показаний от напряжения питания.
5.1.3 Электродинамические приборы
Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек, по которым протекает ток (рис.5.6).
Рисунок 5.6 – Электродинамический измерительный прибор
Внутри неподвижной катушки 1 может вращаться подвижная катушка 2. Поворот осуществляется вращающим моментом, вызванным взаимодействием магнитных полей катушек 1 и 2. Уравнение преобразования прибора для постоянных токов имеет вид
α = (1/W)(dM/dα)I1I2, (5.4)
где М – взаимная индуктивность катушки; I1I2 – токи в катушках.
Если по катушкам протекают переменные токи, то это выражение примет вид
α = (1/W)(dM/dα)I1I2cos(φ1 – φ2). (5.5)
Из этого уравнения следует, что перемещения подвижной части механизма при работе на переменном токе зависят как от токов в его катушках, так и от разности фаз между этими токами. Это дает возможность использовать приборы электродинамической системы не только в качестве амперметров и вольтметров, но и в качестве ваттметров.
В амперметрах катушки соединены последовательно (рис.5.7.а) или параллельно (рис.5.7.б). Последовательное соединение используется в приборах, предназначенных для измерения малых токов (до 0,5 А). При больших токах (до 10 А) катушки включаются параллельно.
Рисунок 4.7 – Схема соединений катушек амперметра
а) неподвижная, б)подвижная
В последовательной схеме амперметра I1 = I2 = I, φ1 – φ2 = 0, поэтому уравнение преобразования (4.5) сводится к виду
α = (1/W)(dM/dα)I2, (4.6)
т.е. при условии dМ/dα = const угол поворота стрелки α квадратично зависит от тока, протекающего в катушках.
В этом случае шкала неравномерна. Поэтому расположение и форму катушек выбирают так, чтобы производная dM/dα зависела от угла между подвижной и неподвижной катушками.
В параллельной схеме I1 = kI; I2 = kI, а разность фаз также устанавливается равной нулю подбором индуктивностей в цепях катушек.
Вольтметры выполняются по схеме (рис.5.8). Катушки включаются последовательно, ток через них ограничивается добавочным резистором Rдоб.
Уравнение преобразования вольтметра имеет вид
α = (1/W)(dM/dα)(U2/R2), (5.7)
где R - общее сопротивление цепи прибора.
Как и в случае амперметров, изменением dM/dα добиваются почти равномерного характера рабочего участка электродинамических вольтметров.
Рисунок 5.8 – Схема включения катушек вольтметра
Обычно электродинамические вольтметры выполняются многопредельными при помощи нескольких добавочных резисторов.
Схема соединения катушек ваттметра и его включения в цепь для измерения мощности, потребляемой нагрузкой Zн , приведена на (рис.5.9).
Рисунок 5.9 – Схема включения ваттметра
Ток I1 в неподвижной катушке равен току нагрузки, а ток I2 в подвижной катушке пропорционален приложенному напряжению:
I2 = U/(Rдоб + r),
где Rдоб - сопротивление добавочного резистора; r — сопротивление подвижной катушки.
С учетом этого и (5.5) уравнение шкалы для ваттметра
α = (1/W(Rдоб + r))(dM/dα)Р (5.8)
где Р - активная мощность нагрузки.
Погрешности электродинамических приборов возникают из-за температурных влияний и наличия внешних магнитных полей. При повышении частоты до нескольких сот герц существенными становятся также частотные погрешности.
5.1.5 Электростатические приборы
Принцип действия электростатических приборов основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, закрепленная вместе со стрелкой на оси, может перемещаться, взаимодействуя с двумя электрически соединенными неподвижными пластинами . Входные зажимы, к которым подводится измеряемое напряжение, соединены с подвижной и неподвижными пластинами. Под действием электростатических сил подвижная пластина втягивается в пространство между неподвижными пластинами.
Уравнение преобразования электростатического прибора для постоянного тока
α = (1/2W)(dС/dα)U2, (5.9)
где С - емкость между пластинами, зависящая от их взаимного расположения; U- измеряемое напряжение. Из (5.9) следует, что показание прибора не зависит от полярности приложенного напряжения.
В случае переменного тока уравнение остается прежним, но только переменная U является действующим значением переменного напряжения.
Достоинства: широкий частотный диапазон, малое потребление энергии, независимость показаний от внешних магнитных полей.
Недостатки: низкая чувствительность и невысокую точность.
5.1.6 Электромагнитные приборы
Электромагнитный измерительный механизм представлен на (рис.5.10), где 1 - катушка; 2 - сердечник, укрепленный на оси прибора; 3 - спиральная пружина, создающая противодействующий момент; 4 - воздушный успокоитель.
Рисунок 5.10 – Конструкция электромагнитного прибора
Под действием магнитного поля сердечник втягивается внутрь катушки. Подвижная часть механизма поворачивается до тех пор, пока вращающий момент не уравновесится противодействующим моментом, создаваемым пружиной.
Уравнение преобразования прибора имеет вид
α = (1/2W)(dL/dα)I2, (5.10)
где L - индуктивность катушки, зависящая от положения сердечника, а следовательно, и от угла поворота подвижной части.
Из (5.10) следует, что угол поворота подвижной части механизма пропорционален квадрату действующего значения тока, т.е. не зависит от направления тока. Поэтому электромагнитные приборы одинаково пригодны для измерений в цепях постоянного и переменного тока.
Достоинства: низкая стоимость, надежность, пригодность для измерения в цепях постоянного и переменного тока.
Недостатки: большое потребление энергии, малая точность и чувствительность, сильное влияние внешних магнитных полей.
Заключение: у большинства электромеханических приборов входное сопротивление невелико (килоомы), поэтому они пригодны для измерения напряжения только в низкоомных цепях. В цепях с высокоомными нагрузками (мегаомы) эти приборы (за исключением электростатических) использовать нельзя, так как при их включении шунтируется нагрузка и тем самым изменяется электрический режим цепи. Кроме того, малый диапазон частот, большие входные емкости и индуктивности, зависимость входного сопротивления от частоты.
5.2 Аналоговые электронные приборы
Электронным вольтметром называется измерительный прибор, показания которого вызываются током от источника питания, а измеряемое напряжение управляет величиной этого тока. Электронные вольтметры имеют в своем составе усилители.
В зависимости от конструкции электронные вольтметры делятся на: универсальные, постоянного и переменного тока, и импульсные. Вольтметры переменного тока обычно строятся по двум структурным схемам (рис.5.11).
Вольтметр, схема которого приведена на (рис.5.11,.а), включает делитель напряжения ДН, преобразователь переменного напряжения в постоянное ПН, усилитель постоянного тока УПТ и магнитоэлектрический измерительный механизм ИМ (микроамперметр на ток полного отклонения 50-500мкА).
Рисунок 5.11 – Структурные схемы электронных вольтметров
Вольтметры данной схемы имеют широкий частотный диапазон (до 700-1000 МГц), но сравнительно низкую чувствительность (наименьшее значение верхнего предела измерения 1В), что обусловлено нелинейностью вольт-амперных характеристик выпрямительных элементов.
Вольтметры с предварительным усилением входного переменного напряжения (рис.5.11,б) имеют более узкий частотный диапазон (около 500 кГц), но благодаря предварительному усилению их чувствительность значительно выше – наименьший верхний предел равен 1мВ.
Электронные вольтметры в отличие от электромеханических имеют
большое входное сопротивление. Они обеспечивают измерение напряжений в высокоомных цепях без нарушения их электрических режимов.
Измерения могут проводиться в широком диапазоне частот от постоянного тока до единиц гигагерц.
Обязательным элементом измерительной цепи является преобразователь переменного напряжения в постоянное. Постоянное напряжение на выходе этих преобразователей пропорционально одному из значений измеряемого переменного напряжения: амплитудному, средневыпрямленному, среднеквадратическому. Однако независимо от вида преобразователя шкалу вольтметров переменного тока градуируют в среднеквадратических значениях напряжения синусоидальной формы, что следует учитывать при определении значения измеряемой величины.
Преобразователи напряжения ПН делятся на преобразователи амплитудного, средневыпрямленного (среднего по модулю) и действующего значения. В вольтметрах с предварительным выпрямлением (рис.5.11,а) применяются преобразователи амплитудного значения (ПАЗ), а в вольтметрах по схеме (рис.5.11,б) - преобразователи среднего (ПСЗ) или действующего значения (ПДЗ).
Рассмотрим ПАЗ с открытым входом, которые обычно состоит из диода, конденсатора и сопротивления нагрузки (рис.5.12.а).
Рисунок 5.12 – Схема ПАЗ переменного напряжения
При положительной полуволне входного напряжения (диод открыт) конденсатор заряжается до напряжения, близкого к амплитудному. В отрицательный полупериод (диод закрыт) конденсатор разряжается через сопротивление нагрузки. Учитывая, что постоянная разряда значительно больше постоянной заряда τр > τ3, то напряжение при его разряде будет уменьшаться незначительно, как показано на (рис.5.12,б). В результате на конденсаторе установится постоянное напряжение Uc = Uв, почти равное амплитуде входного напряжения
Шкалу вольтметра с ПАЗ градуируют в действующих значениях синусоидального напряжения с учётом коэффициента амплитуды Kа =1,41. При измерении несинусоидальных напряжений возникает погрешность, обусловленная отличием коэффициента амплитуды исследуемого напряжения от заданного.
ПСЗ широко применяются в схемах электронных вольтметров вследствие метрологических характеристик и высокой чувствительности. На (рис.5.13) приведена схема ПСЗ с мостовым выпрямителем в цепи ООС. За счёт высокого коэффициента усиления Ку операционного усилителя, ток в диагонали с ИМ поддерживается пропорционально входному переменному напряжению. Влияние нелинейности вольтамперной характеристики диодов мостовой цепи уменьшается пропорционально коэффициенту усиления усилителя.
Рисунок 5.13 – Схема ПСЗ переменного напряжения
Шкалы вольтметров с ПСЗ также градуируются в действующих значениях синусоидального напряжения, но с учётом коэффициента формы (для синусоидального напряжения Kф = 1,11).
Одним из основных недостатков ПАЗ и ПСЗ является зависимость показаний от формы кривой входного сигнала. Этого недостатка лишены преобразователи действующего значения ПДЗ переменного напряжения.
В электротепловых ПДЗ применяют термопреобразователи, представляющие собой сочетание нагревательного элемента с термопарой. Выходная величина ПДЗ нелинейно связана с действующим значением подаваемого на них напряжения. ПДЗ включает входной усилитель А1, два термопреобразователя ТП1 и ТП2 и выходной усилитель А2 (рис.5.14).
Рисунок 5.14 – Схема ПДЗ переменного напряжения
На вход усилителя А2 поступает разность выходных ЭДС обоих преобразователей ТП1 и ТП2. При этом осуществляется сравнение по действующему значению преобразуемого переменного и выходного постоянного напряжений. В установившемся режиме входное u(t) и выходное постоянное Uвых напряжения равны с высокой точностью.
Электронные вольтметры с ПДЗ имеют основную погрешность 0,5-2,5%, широкий частотный диапазон (200кГц-10МГц) и высокую чувствительность (наименьший верхний предел измерения - 1 мВ).
Рассматриваемые вольтметры имеют обычно широкий частотный диапазон измерений (10 Гц...1000 МГц), но не обладают высокой чувствительностью, т.е. с их помощью нельзя измерять малые напряжения (меньше нескольких долей вольта), так как преобразователь не обеспечивает выпрямление малых сигналов.
Более чувствительными являются вольтметры, выполненные по схеме, представленной на (рис.5.7).
Рисунок 5.7 - Схема аналогового электронного вольтметра переменного тока
Вольтметры этого типа используют для измерения малых напряжений переменного тока от единиц микровольт до единиц вольт. Это возможно благодаря предварительному усилению переменного тока. Однако создание усилителей, работающих в широком диапазоне частот и имеющих большой коэффициент усиления, - трудная техническая задача, поэтому такие вольтметры имеют относительно низкий частотный диапазон (1...10 МГц).