Парадоксы создаваемой теории и проблема интерпретации
Второй важной стороной современного исследования является связь математических гипотез с процедурой построения теоретических схем.
Обычно при анализе современной теоретической деятельности эта сторона упускается из виду, поскольку поиск математических структур, особенно на ранних стадиях формирования теории, превращается в основную познавательную задачу. Проблема интерпретации возникает только после того, как построение математического аппарата продвигается достаточно далеко.
В результате создается впечатление, что математический формализм развитой теории строится независимо от его интерпретации, серией последовательно осуществляемых математических гипотез. Внешне история квантовой электродинамики подтверждает этот вывод. Однако более внимательный анализ обнаруживает, что подобное заключение лишь с большой натяжкой может быть признано справедливым.
Как подчеркнуто выше, уравнения физики не могут существовать вне связи с теоретическими схемами. Иначе они были бы чисто математическими утверждениями, но не выражениями для физических законов.
Посколькупроцесс перестройки уравнений, заимствованных из уже сложившихся областей теоретических знаний, в уравнения для новой области всегда предполагает трансляцию и переопределение соответствующих абстрактных объектов, постольку всякая математическая гипотеза непременно вводит модель претендующую на то, чтобы быть теоретической схемой новой области физических процессов. Эта модель отображается на картину мира и приобретает онтологический смысл. Она определяет первоначальную семантическую интерпретацию создаваемого формализма теории. Эмпирическое обоснование моделина этомэтапе, как правило, отсутствует, и поэтому эмпирический смысл многих величин, связанных в уравнениях, может быть неясным. Но их семантическая интерпретация обязательно должна существовать. До определенного момента эта интерпретация стимулирует развитие создаваемого математического формализма теории. Процесс выработки математического аппарата квантовой электродинамики достаточно хорошо иллюстрирует справедливость сказанного. Возьмем, например, первый этап развития этого аппарата. В процессе квантования электромагнитного поля величины уравнений Максвелла связывались в новой сетке отношений, в согласии с принципами квантовомеханического описания. Соответственно этому приобретали новые признаки и абстрактные объекты, переносимые из классической электродинамики и квантовой механики в новую область теоретических знаний. Таким путем вместе с математическим формализмом создавалась предварительная теоретическая схема, характеризующая микроструктуру электромагнитного поля. В ней вводились в качестве фундаментальных теоретических конструктов состояния электромагнитного поля и классические наблюдаемые, вероятности численных значений которых коррелятивны состоянию поля. Предполагалось, что поле, описываемое волновой функцией (вектором состояния) nk, может быть определено в виде суперпозиции некоторых элементарных состояний ,
и т. д., каждому из которых соответствует nkфотонов (квантов поля), находящихся в данномсостоянии (
фотонов в состоянии
,
фотонов в состоянии
и т. д.). Вектор состояния поля позволяет определить вероятность появления фотонов в каждом из этих “элементарных” сосостояний.
В онтологическом аспекте, который соответствует отображению данной схемы на картину мира, это соответствовало представлению об электромагнитном поле как системе с переменным числом фотонов, возникающих с определенной вероятностью в том или ином квантовом состоянии.
Вместе с тем теоретическая схема предполагала, что вектор состояния поля должен быть связан с некоторой вероятностью наблюдения классических компонент поля в точке. Последнее вытекало из основных принципов квантовомеханического описания, в соответствии с которыми строился аппарат квантованного электромагнитного поля. Согласно этим принципам операторы поля должны быть сопоставлены с физическими величинами, численные значения которых могут быть точно определены на уровне макроскопической регистрации прибором, настроенным на измерение соответствующей величины. Вероятность выпадения этих величин определяется вектором состояния поля (точнее, квадратом модуля волновой функции). Поле могло быть охарактеризовано, например, операторами напряженностей и
, так что в опыте должны были наблюдаться величины E и Н, соответствующие математическим ожиданиям этих операторов.
Рассмотренная теоретическая схема на первых порах принималась без процедуры ее эмпирического обоснования. В частности, специально не проверялось, насколько правомерно переносить на новую область взаимодействий такие идеализации (абстрактные объекты), как поля в точке, заимствованные из классической электродинамики. Представления классической электродинамики о том, что состояния поля могут быть охарактеризованы напряженностями Е и Н в пространственно-временной точке, были сохранены в рамках квантовомеханического описания электромагнитного поля. Такое описание вносило лишь одно явное изменение в классические представления: оно требовало применять классические наблюдаемые для характеристики состояния поля с учетом принципиально статистического характера ожидания их конкретных значений, но не накладывало никаких ограничений на возможность точного определения каждого из таких значений для каждой из отдельно взятых величин при измерении. Поэтому предварительная теоретическая модель квантованного поля излучения, определяя семантическую интерпретацию соответствующих уравнений, на первых порах принималась как вполне правомерная и с точки зрения эмпирического смысла. Во всяком случае, эмпирическая интерпретация связанных в уравнениях величин вначале казалась очевидной и легкоосуществимой по рецептам стандартного квантовомеханического описания.
Убеждение в надежности вводимых теоретических моделей до поры до времени стимулировало развитие математического формализма квантовой электродинамики. Достаточно вспомнить, что сразу же после квантования электромагнитного поля были предприняты попытки построить подобный аппарат для описания электронного поля.
Однако успешное продвижение по пути к обобщающим уравнениям квантовой электродинамики было прервано обнаружением парадоксов в самом фундаменте создаваемой теории. Оказалось, что классические напряженности поля в точке не могут иметь точного значения. Если поле состоит из отдельных квантов, возникающих и исчезающих с определенной вероятностью в различных квантовых состояниях, то всегда возможны хаотические флуктуации каждой компоненты поля в точке.
Таким образом, два одинаково фундаментальных положения, казалось бы, уже построенной теории квантованного поля излучения (утверждение, что состояние поля может быть охарактеризовано классическими величинами компонент поля в точке, и утверждение, что поле представляет систему с переменным числом фотонов, заполняющих определенные “элементарные” состояния, суперпозиция которых характеризует поле) оказались противоречащими друг другу. Появление таких противоречий разрушало первоначально принятую теоретическую схему и тем самым лишало соответствующий математический аппарат физического смысла.
Указанное обстоятельство представляет факт первостепенной важности для методологического анализа. Выясняется, что на определенной стадии построения аппарата современной теории математические гипотезы должны быть обязательно подкреплены анализом теоретических схем и их конструктивным обоснованием. Иначе говоря, движение в плоскости математического формализма может быть относительно свободным только до некоторого момента и далее оно может продолжаться только тогда, когда скоррелировано с движением в плоскости физического содержания.
Парадоксы, обнаруженные в первоначальном варианте теории квантованного электромагнитного поля, представляли собой один из весьма характерных моментов современного теоретического исследования. Математическая гипотеза, видоизменяя связи между теоретическими конструктами предшествующих уравнений, наделяет такие конструкты новыми признаками, среди которых один может исключать другой. Именно это и произошло в процессе построения аппарата квантованного поля излучения, когда осуществлялся синтез уравнений электродинамики Эйнштейна — Лоренца с квантовомеханическим способом описания.
Парадоксы квантованного поля излучения послужили сигналом появления в теории конструктов, наделенных взаимоисключающими признаками.
Эта ситуация была аналогичной уже рассмотренным выше парадоксам резерфордовской модели атома и релятивистской теории электрона Дирака. В истории классической электродинамики с подобной ситуацией мы сталкивались, когда анализировали тот этап деятельности Максвелла, на котором он пытался ввести уравнение для электромагнитной индукции, опираясь на модель стационарных силовых линий.
Естественно, что первые усилия, направленные на устранение парадоксов, должны были заключаться в обнаружении неконструктивных элементов внутри теоретической схемы, введенной вместе с аппаратом квантованного поля излучения на стадии математической гипотезы. Необходимо было произвести своеобразную селекцию теоретических объектов, выявить среди них элементы, “ответственные” за появление парадоксов, и заменить их новыми абстрактными объектами, удовлетворяющими процедуре эмпирического обоснования.
Первая часть этой задачи была решена отчасти в работе В. Фока и П. Иордана[49] и более полно в исследовании Л. Ландау и Р. Пайерлса[50].
Строго говоря, указанные парадоксы могли быть вызваны либо тем, что вектор состояния поля был определен (в отличие от привычного квантовомеханического подхода) как суперпозиция состояний с переменным числом частиц (фотонов), либо неявно используемым предположением, что наблюдаемыми величинами должны быть напряженности поля в точке.
Поскольку представление о поле как системе с переменным числом фотонов позволяло объяснить известные зависимости поглощения и испускания квантов света атомами, постольку соответствующие характеристики вектора-состояния обосновывались эмпирически и приобретали конструктивный смысл. Оставалось проверить, обладают ли таким смыслом классические наблюдаемые поля в точке. Для этого и были осуществлены мысленные эксперименты, с помощью которых выяснялось, можно ли, вводя указанные наблюдаемые в новой области, сохранить их главный признак — принципиальную измеряемость (т. е. возможность получать точные значения каждой наблюдаемой величины с помощью классического прибора). Мысленные эксперименты Фока—Иордана и Ландау—Пайерлса обнаружили, что если принять во внимание и квантовые, и релятивистские эффекты, то измерения напряженностей квантованного поля в точке невозможны.
Суть рассуждений, из которых был получен этот вывод, заключалась в следующем. Согласно принятому в классической теории подходу, напряженности Е и Н определяются через воздействие поля на заряженное пробное тело. В случае компонент Е это воздействие измеряется через импульс, передаваемый пробному заряду, в случае компонент Н — через момент импульса, передаваемый пробному магниту или некоторому распределению заряда-тока. Поскольку требуется измерить поле в точке, постольку пробное тело также должно быть точечным. Допустим, что задача состоит в определении компоненты . Для этой цели необходим точечный заряд. В качестве такового в мысленных экспериментах Фока — Иордана принимался электрон, ускоряемый полем, а в мысленных экспериментах Ландау — Пайерлса допускалась точечная частица произвольной природы (которая могла иметь, например, бóльшую массу по сравнению с электроном).
Измерение компоненты поля означает, что импульс, полученный от поля пробной частицей, должен быть зарегистрирован классическим прибором. Тогда значение этого импульса позволит точно определить значение соответствующей компоненты поля.
Таким образом, процедура мысленного измерения полевых компонент в точке в момент t предполагала выполнение двух условий: 1) локализации пробной частицы в данной точке поля в момент t, где частица приобретает импульс; 2) точную регистрацию этого импульса классическим прибором.
Поскольку пробная частица подчинялась квантовым законам, оба этих условия оказались принципиально невыполнимыми. Первое было невозможно вследствие соотношения неопределенностей — локализация частицы в точке приводила к принципиальной неопределенности р в значении ее импульса. Следовательно, изначение напряженности поля могло быть получено только с точностью, не превышающей р.
Второе условие было неосуществимо по двум обстоятельствам. Во-первых, невозможно было точно зарегистрировать импульс точечной пробной частицы вследствие квантовых закономерностей обмена энергией-импульсомчастицы с прибором. Поскольку существует соотношение неопределенностей t ~?( — энергия, t — время), постольку соударение частицы с прибором, при котором она за время tпередает свою энергию прибору, приводит к неопределенности в значении этой энергии . Связь между энергией и импульсом порождает соответствующую зависимость между временем tи измеряемым импульсом Рх. Эта зависимость выражается формулой v " x—v ' x| Px t ~? (1)[51], где v ' xи v " x—скорости частицы до и после измерения, t —время измерения, P x—неопределенность в значении импульса частицы.
Учет релятивистских эффектов предполагает, что v " x - v ' x|не можетпревышать скорости света с. Вследствие этого на основе (1) возникает зависимость Pxt , согласно которой, чем меньше время измерения импульса частицы, тем больше неопределенность взначении измеряемого импульса.
При измерениях компоненты Е xв пространственно-временной точке предполагается практически мгновенная регистрация импульса пробной частицы. Нужно бесконечно уменьшать промежуток, за который происходит измерениеt0, с темчтобы избежать побочных воздействий на импульс пробной частицы. Но тогдаPxбудет неограниченно возрастать. Получается, что соблюдение одного необходимого условия, обеспечивающего точное измерение напряженностей поля в точке (практически мгновенная регистрация импульса пробной частицы), приводит к принципиальной невыполнимости другого, столь же необходимого условия (точное измерение этого импульса классическимприбором).
Во-вторых, точная регистрация импульса пробной частицы неосуществима вследствие того, что частица излучает в момент соударения с прибором и начинает взаимодействовать с собственным полем излучения. Оказывается, учет такого воздействия невозможен в силу квантовых эффектов. Влияние собственного излучения частицы на измерение ее импульса может быть учтено только с некоторой принципиально неустранимой погрешностью[52].
Таким образом, при определении компоненты поля с помощью точечной пробной частицы возникают три неустранимых типа неопределенности ее импульса: вследствие ее локализации в точке поля, вследствие ее взаимодействия с прибором за время tи вследствие ее взаимодействия с порождаемым ею же излучением.
В свою очередь, неопределенность импульса пробной частицы означает принципиальную невозможность измерения каждой из компонент напряженностей квантованного поля излучения в пространственно-временной точке. Получалось, что указанные теоретические конструкты (поля в точке) не имеют смысла при их распространении на область квантовых процессов. С методологической точки зрения важно обратить внимание на структуру мысленных экспериментов, приведших к указанному выводу. Показательно, что они учитывали не только квантовые, но и релятивистские эффекты, проявляющиеся при измерении компонент поля, и поэтому выражали в идеализированной форме характерные особенности возможных экспериментов и измерений новой области. Анализ измеримости компонент поля в точке показывает, можно ли ввести отмеченные абстрактные объекты в виде идеализаций, опирающихся на реальные особенности экспериментально-измерительной деятельности по изучению квантованных полей. Здесь нетрудно обнаружить характерные признаки процедуры конструктивного введения абстрактных объектов.
Отрицательный результат означал, что упомянутые объекты суть неконструктивные элементы в предварительно принятой теоретической схеме. Обнаружение таких элементов представляло собой первый необходимый шаг к перестройке теоретической схемы на конструктивных началах. Далее возникала задача таким образом изменить ее, чтобы, с одной стороны, сохранить, по крайней мере в основных чертах, построенный аппарат теории, а с другой — обосновать вводимую теоретическую схему в качестве идеализированной модели экспериментально-измерительных ситуаций, относящихся к новой области взаимодействий. В истории квантовой электродинамики эта задача была решена в результате познавательной деятельности, которая известна под названиемизмерительных процедур Бора—Розенфельда.