5. 1. Становление рефлексов и развитие двигательных навыков в онтогенезе
Основные жизненно важные рефлекторные акты, генетически закрепившиеся в ходе эволюции, проявляются на определенных стадиях онтогенеза. На базе этих врожденных реакций вырабатываются многообразные приобретенные рефлексы, обеспечивающие индивидуальный опыт в поведении. Чем выше по своей организации животное, тем больший удельный вес в ходе развития занимают условнорефлекторные формы поведения. Доминирующее значение они приобретают у высших животных и человека.
5.1.1. Антенатальный период
А. Рефлексы плода. Еще в период внутриутробной жизни у млекопитающих возникают характерные для каждой стадии развития типы двигательных рефлексов и вегетативных функций. Так, например, у плода кролика - типичного представителя млекопитающих последовательно выявляются следующие фазы нервной деятельности:
• фаза первичных локальных двигательных рефлексов, выражающаяся в изолированных движениях головы и конечностей в ответ на механические и другие раздражения кожи этих областей;
• фаза первичной генерализации рефлексов - обобщенных быстрых вздрагивательных движений всего тела в ответ на раздражения разных областей;
• фаза вторичной генерализации рефлексов - обобщенных медленных тонических движений головы, туловища и конечностей в ответ на раздражение любых участков тела;
• фаза специализации двигательных рефлексов.
Каждая из указанных фаз нервной деятельности хронологически совпадает с определенной морфологической зрелостью спинного и продолговатого мозга, а также периферических нервных аппаратов.
Первые локальные и общие движения головы, туловища и конечностей осуществляются за счет структурных звеньев рефлекторных дуг спинного и продолговатого мозга, без участия вышележащих отделов мозга. В этот период отмечается дифференцировка рецепторных аппаратов кожи и мышц, межпозвоночных и черепно-мозговых узлов, передних рогов спинного и продолговатого мозга, начальная миелинизация проводящих путей спинальных дуг, обособление друг от друга осевых цилиндров в волокнах путей. Стволовые отделы головного мозга при этом находятся только на стадии топографической дифференцировки, в цитологическом отношении они являются еще совсем незрелыми. Наличие у плода обобщенных тонических реакций уже связано с участием стволовых образований головного мозга, которые к этому времени достигают большей степени структурной зрелости. Наконец, фаза специализации рефлекторных реакций, охватывающая последние дни зародышевой жизни и ранний период после рождения, обусловливается дальнейшей морфологической зрелостью рефлекторных дуг спинного мозга и значительным структурным развитием стволовых, подкорковых и корковых отделов головного мозга.
У человеческого зародыша 7,5-8 нед впервые появляются локальные двигательные рефлексы в виде контрлатеральной или дорсальной флексии шеи и верхней части туловища на раздражение губ и крыльев носа (без участия других частей тела). К этому времени морфологически созревают все элементы рефлекторной дуги, необходимые для осуществления этого рефлекса. В возрасте 8,5-9,5 нед контрлатеральная флексия на раздражение тех же зон сопровождается участием в движении большей части туловища и верхних конечностей. По мере роста плода все больше увеличивается количество рефлексогенных зон кожи, с которых удается вызвать двигательные реакции с вовлечением в них значительных групп мышц.
У человеческого плода в возрасте около 3 мес обнаруживается ряд двигательных рефлексов (открывание рта, сгибание шеи, локальные движения отдельных частей конечностей, примитивный подошвенный рефлекс и др.). Вскоре рефлекторные реакции плода приобретают характер обобщенных, генерализованных движений. Раздражение любого ограниченного пункта кожи (например, голени) вызывает не только сгибание и разгибание, приведение и отведение данной конечности, но и двигательные акты другой ноги, обеих рук, туловища и головы. При этом каждый участок кожи может служить рефлексогенной зоной для самых разнообразных двигательных реакций, распространяющихся на большую или меньшую часть организма. Однако у плода более зрелого возраста (после 5-6 мес) наклонность к генерализации рефлексов постепенно исчезает и выявляется тенденция к ограничению и специализации рефлексов: при повторном аналогичном раздражении движения становятся ограниченными и сосредоточенными в пределах стимулируемой зоны тела.
Ранние формы рефлексов у плода человека, так же как и у высших животных, осуществляются за счет рефлекторных дуг, замыкающихся в пределах спинного и продолговатого мозга. В связи с недостаточной морфологической зрелостью этих дуг (неполная дифференцировка клеток, незрелость осевых цилиндров волокон, слабая миелинизация), обусловливающей широкую иррадиацию процесса возбуждения и слабую выраженность тормозного процесса, в этот период наблюдаются генерализованные двигательные реакции. В более позднем возрасте, начиная с 6-7-го месяца, усложняющиеся и специализирующиеся рефлекторные акты протекают уже с участием стволовых и подкорковых отделов головного мозга. В это время цитологическая дифференцировка важных образований мозга (красное ядро, черная субстанция, наружное и внутреннее коленчатые тела и др.), а также клеточная дифференцировка отдельных слоев коры выражены более отчетливо.
Б. Спонтанная активность мускулатуры плода. Выделяют три основные формы такой активности.
Форма 1 - тонические сокращения мышц-сгибателей, обеспечивающие ортотоническую позу (согнутые шея, туловище и конечности), благодаря которой плод занимает в матке минимальный объем. Эта поза поддерживается раздражением кожных рецепторов околоплодными водами, а также афферентной импульсацией от проприорецепторов скелетных мышц.
Форма 2 - периодические фазные сокращения мышц-разгибателей. Они имеют генерализованный характер. Эти движения ощущаются матерью как шевеление плода обычно 4-8 раз в час начиная с 4,5-5 мес беременности. Частота шевелений увеличивается при обеднении крови матери, а вследствие этого и плода питательными веществами и кислородом. В процессе двигательной активности плода у него усиливается деятельность сердца, повышается АД, ускоряется кровоток по всему организму и, естественно, через плаценту, что ведет к увеличению в крови количества кислорода и питательных веществ. Двигательная активность плода способствует развитию его мускулатуры и мозга.
Форма 3 - дыхательные движения. Они начинаются на 14-й неделе внутриутробного развития. Частота дыхательных движений 40-70 в 1 мин. На 6-м месяце внутриутробного развития достаточной зрелости достигают структуры, ответственные за центральную регуляцию дыхания. Последнее обеспечивает возможность их немедленного включения в работу после рождения ребенка.
Зрелой к моменту рождения является фракция ядра лицевого нерва, реализующая управление соответствующими эффекторами в составе функциональной системы сосания (П.К.Анохин).
В процессе развития рефлекторной деятельности ребенка 1-го года жизни обращают на себя внимание непостоянство и вариабельность отдельных рефлексов, а также меняющийся уровень рефлекторной возбудимости. В раннем возрасте все кожно-мышечные, сухожильные, шейно-тонические и лабиринтные рефлексы, осуществляемые через нижележащие отделы мозга, чрезвычайно повышены. Повышение рефлекторной возбудимости отмечается вплоть до второго полугодия жизни ребенка, после чего она постепенно снижается до уровня, соответствующего взрослому человеку. Высокая общая рефлекторная возбудимость и наличие ряда специфических рефлексов (хоботковый, хватательный, Моро, Бабинского и др.) являются следствием недостаточного развития в ранний период коры большого мозга и тесно связанных с ней ближайших подкорковых образований, т.е. отсутствием с ее стороны регулирующих влияний на нижележащие центры. В полной мере эти влияния устанавливаются в течение первых лет жизни ребенка и во многом зависят от благоприятных факторов внешней среды и педагогических воздействий.
5.1.2. Неонатальный период
В неонатальном периоде отмечаются дальнейший рост нервной ткани, усиление процессов миелинизации нервных волокон, дифференцировки нейрофибрилл, совершенствование механизмов проницаемости клеточных мембран, повышение возбудимости нейронов, развитие их шипикового аппарата, установление ассоциативных связей, что в итоге приводит к постепенному совершенствованию базовых нейродинамических процессов.
У новорожденных спинной мозг, структуры ствола мозга, бледное ядро, зрительный бугор развиты в целом хорошо. Красное ядро, красноядерно-спинномозговой путь миелинизированы.
Как известно, корковой частью двигательного анализатора являются поля 4 и 6. К моменту рождения эти поля развиты недостаточно.
Созревание структур ЦНС усиливается гормонами щитовидной железы. Стимулирующая роль в ходе созревания и функционального становления ЦНС отводится афферентным потокам импульсов, поступающих в структуры мозга из внешней среды.
Электрофизиологические характеристики нейронов обладают рядом особенностей. В частности, нейроны у новорожденных имеют относительно высокий ПП - около 50 мВ (у взрослых 60-80 мВ). Поверхность тела нейронов и дендритов, покрытая синапсами, во много раз меньше, чем у взрослых. Возбуждающие постсинаптические потенциалы (ВПСП) имеют большую длительность, чем у взрослых, более продолжительной является синаптическая задержка, нейроны оказываются менее возбудимыми. Не столь эффективны процессы постсинаптического торможения нейронов вследствие малой амплитуды тормозных постсинаптических потенциалов (ТПСП), а также меньшего числа на нейронах тормозных синапсов.
Вследствие морфологической и функциональной незрелости структур ЦНС, недостаточности элементарных механизмов возбуждения и торможения у новорожденных оказываются несовершенными многие проявления их двигательной активности.
Спонтанные периодические движения новорожденного беспорядочны, хаотичны, в них участвуют конечности, голова и туловище. Тем не менее наблюдаются и координированные ритмические сгибания и разгибания. Периоды двигательной активности отчетливо преобладают над периодами полного покоя. Для проснувшегося новорожденного характерны пространственно ориентированные движения головы, направленные на поиск материнской груди, полноценные сосательные движения.
Мышечный тонус у новорожденных поддерживается импульсами, идущими от проприорецепторов, кожных терморецепторов и даже рецепторов растяжения легких, активирующихся при вдохе.
Для новорожденного, как и для плода, характерна ортотоническая поза как следствие некоторой гипертензии мышц-сгибателей.
Отличительными особенностями рефлексов новорожденных являются генерализованный характер их проявления и обширность рефлексогенной зоны вызова того или иного рефлекса. Эти свойства рефлексов объясняются, во-первых, отсутствием над ними контроля со стороны головного мозга; во-вторых, относительно облегченной иррадиацией процесса возбуждения в ЦНС. Причиной иррадиации возбуждения является слабость процессов торможения. С возрастом рефлексы становятся более совершенными: генерализованность уменьшается, рефлексогенные зоны рефлексов суживаются. В возрасте 1-5 дней рефлексогенной зоной сосательного рефлекса являются губы и кожа всего лица; в 6-10 дней - губы и кожа вокруг рта, в возрасте 15 дней - только губы. Ряд рефлексов новорожденного постепенно исчезает, но многие из них подвергаются лишь угнетению в результате развивающихся тормозных влияний со стороны вышележащих отделов мозга, особенно коры большого мозга, на нижележащие центры.
Всю совокупность рефлексов новорожденного целесообразно разделить на следующие пять групп:
1. Пищевые: сосательный и глотательный рефлексы появляются при механическом, тепловом и вкусовом раздражении рецепторов ротовой и околоротовой областей. Так, если вложить ребенку в рот соску, он начинает совершать активные сосательные движения. Сосательный рефлекс исчезает к концу 1-го года жизни.
2. Защитные: мигательный рефлекс - мигание при освещении глаз или раздражении поверхности носа, век, ресниц, роговой оболочки глаз; зрачковый рефлекс - уменьшение диаметра зрачка при освещении; рефлекс отдергивания конечности в ответ на болевое раздражение.
3. Двигательные: хватательный рефлекс (рефлекс Робинсона) -схватывание и прочное удерживание предмета (палец, карандаш, игрушка) при прикосновении им к ладони - исчезает на 2-4-м месяце. Рефлекс обхватывания (рефлекс Моро) - отведение рук в стороны и разгибание пальцев с последующим возвращением рук в исходное положение. Для вызова рефлекса ребенка, находящегося на руках у врача, резко опускают на 20 см и затем поднимают до исходного уровня. Рефлекс можно вызвать при ударе по поверхности, на которой лежит ребенок, а также при быстром подъеме с положения на спине. Исчезает после 4 мес. Подошвенный рефлекс (рефлекс Бабинского) - изолированное тыльное разгибание большого пальца и подошвенное сгибание (иногда веерообразное расхождение) остальных при раздражении подошвы по наружному краю стопы от пятки к пальцам. Исчезает после 12 мес. Коленный рефлекс - сгибание (у взрослых разгибание) в коленном суставе при ударе по сухожилию четырехглавой мышцы бедра ниже коленной чашечки. Сгибание у новорожденных связано с преобладанием у них тонуса мышц-сгибателей; заменяется разгибательным рефлексом на 2-м месяце. Хоботковый рефлекс - выпячивание губ хоботком в результате сокращения круговой мышцы рта при легком ударе пальцем по губам ребенка или поколачивании по коже вокруг рта на уровне десен; исчезает к концу первого полугодия жизни. Поисковый рефлекс (поиск груди матери) - опускание губ, отклонение языка и поворот головы в сторону раздражителя при поглаживании кожи в области угла рта. Рефлекс ярче выражен у голодного ребенка; исчезает к концу 1-го года жизни. Рефлекс ползания (рефлекс Бауэра): ребенка кладут на живот так, чтобы голова и туловище располагались на одной линии. В таком положении ребенок на несколько мгновений поднимает голову и совершает ползающие движения (спонтанное ползание). Если подставить под подошвы ладонь, движения становятся более разнообразными: ребенок начинает отталкиваться ногами от препятствия, в «ползание» включаются руки. Рефлекс исчезает к 4 мес.
4. Тонические: лабиринтный рефлекс вызывается изменением положения головы в пространстве. У ребенка, лежащего на спине, повышен тонус разгибателей шеи, спины, ног. Если ребенка перевернуть на живот, то увеличивается тонус сгибателей шеи, спины, конечностей. Рефлекс Кернига: у лежащего на спине ребенка сгибают ногу в тазобедренном и коленном суставах, затем пытаются разогнуть ногу в коленном суставе. Рефлекс считается положительным, если сделать это не удается; исчезает после 4 мес.
5. Ориентировочный. Возникает на достаточно сильные неожиданные раздражения экстерорецепторов (вспышка света, звук), выражается вздрагиванием ребенка с последующим «замиранием». Уже в конце 1-й недели после рождения ребенок поворачивает глаза и голову в сторону источников света и звука. Отмечается начальное несовершенное слежение за ярким перемещающимся в одной плоскости объектом. Ориентировочный рефлекс является основой выработки будущих условных рефлексов на звуковые и световые раздражители.
Интеграция всех двигательных реакций у новорожденного ребенка реализуется на уровне таламопаллидарных структур.
5.1.3. Грудной возраст и другие возрастные периоды
А. Общая характеристика двигательных навыков детей в раннем онтогенезе. Характер движений ребенка в раннем онтогенезе определяется, во-первых, степенью зрелости ЦНС, во-вторых, как и у взрослых, усвоением двигательных навыков, которые для ребенка в раннем онтогенезе практически все новые.
Взрослый человек привычные движения совершает механически, незаметно для внимания, смена одних мышечных сокращений другими непроизвольна, автоматизирована. Двигательные автоматизмы гарантируют наиболее экономное расходование мышечной энергии в процессе выполнения движения. Новый, незнакомый двигательный акт энергетически всегда более расточителен, чем привычный, автоматизированный. Взмах косы косаря, удар молота кузнеца, бег пальцев музыканта - до предела отточенные, энергетически скупые и рациональные автоматизированные движения. Совершенствование движений в их постепенной экономизации, автоматизации, обеспечиваемой деятельностью стриопаллидарной системы.
Стриарная система является более «молодой», чем паллидарная, как в филогенетическом, так и в онтогенетическом отношении. Она впервые появилась лишь у птиц, у человека формируется к концу внутриутробного периода, несколько позже, чем паллидум (бледный шар).
Паллидарная система у рыб и стриопаллидарная у птиц являются высшими двигательными центрами, определяющими поведение. Стриопаллидарные аппараты обеспечивают диффузные, массовые движения тела, согласованную работу всей скелетной мускулатуры в процессе передвижения, плавания, полета и др. Жизнедеятельность высших животных, человека требует более тонкой дифференцировки работы двигательных центров. Потребности движений, носящих целенаправленный, производственный характер, уже не может удовлетворить экстрапирамидная система. В коре переднего мозга создается в процессе эволюции высший аппарат, координирующий согласованную функцию пирамидной и экстрапирамидной систем, руководящих выполнением сложных движений. Однако, перейдя в субординированное, «подчиненное» положение, стриопаллидарная система не утратила присущих ей функций.
Различие функционального значения стриатума (полосатое тело) и паллидума также определяется усложнением характера движений в процессе филогенеза. «Паллидарные» рыбы, передвигаясь во взвешенном в воде состоянии бросковыми, мощными движениями туловища, не должны «заботиться» об экономии мышечной энергии. Потребности такого двигательного акта вполне удовлетворяются работой паллидарной системы, обеспечивающей движения мощные и относительно точные, но энергетически расточительные, чрезмерные.
Птица, вынужденная в полете совершать огромную работу и не имеющая возможности вдруг прервать ее в воздухе, должна располагать более сложным двигательным аппаратом, расчетливо регулирующим качество и количество движений, - стриопаллидарной системой.
Развитие и включение двигательных систем в онтогенезе человека имеет ту же последовательность. Миелинизация стриарных путей заканчивается лишь к 5-му месяцу жизни, поэтому в первые месяцы паллидум является высшим моторным органом. Моторика новорожденных имеет явные «паллидарные» черты. Движения ребенка до 3-4 лет и движения молодого животного (щенка, олененка, зайчонка и т. д.) имеют большое сходство, заключающееся именно в излишестве, свободе, щедрости движений. Характерно богатство мимики ребенка, также свидетельствующее о некотором преобладании «паллидарности». С возрастом многие движения человека становятся все более привычными, автоматизированными, энергетически расчетливыми, скупыми. Улыбка перестает быть постоянным выражением лица. Степенность, солидность взрослых - это торжество стриатума над паллидумом, торжество трезвой расчетливости автоматизированных движений над расточительной щедростью еще «неопытной» стриопаллидарной системы ребенка.
Процесс обучения какому-либо движению, направленный на автоматизацию двигательного акта, имеет две фазы. Во время первой фазы, которую условно называют паллидарной, движение чрезмерно, излишне по силе и длительности сокращения мышц. Вторая фаза рационализации движения заключается в постепенной отработке оптимального для данного индивида энергетически рационального, максимально эффективного (при минимальной затрате сил) способа движения.
Стриопаллидарная система является важнейшим инструментом в выработке двигательных автоматизмов, которые у взрослого человека целенаправленно подбираются и реализуются высшими корковыми центрами праксиса. Относительная «паллидарность» ребенка обусловлена не только незрелостью стриатума, но и тем, что ребенок еще находится в стадии двигательного обучения в первой, паллидарной, фазе его. Чем старше ребенок, тем все большее число двигательных актов автоматизировано, т.е. перестало быть «паллидарными». Наряду с этим незрелость стриатума и преобладание «паллидарности» у новорожденных как бы заранее запланированы, поскольку именно «паллидарность» необходима ребенку в первый период внеутробной жизни.
Б. Различная степень развития двигательных актов продемонстрирована и с помощью электрофиологической методики. В широком возрастном диапазоне (5-17 лет) с использованием речевой инструкции, определяющей уровень мобилизационной готовности (оперативный покой, экстренное реагирование), методом регистрации ВП были выявлены особенности функционирования системы активации на разных этапах онтогенеза.
На I этапе (7-10 лет) определяются закономерные изменения в динамике регионарных ВП, связанные с мобилизационной готовностью. Наблюдается переход от генерализованной формы активации к регионарно-специфичной активации, обеспечивающей дифференцированность активационных процессов.
На II этапе (11-14 лет) отмечается снижение реактивности к внешним воздействиям. Анализ электрофизиологических показателей подростков, дифференцированных по полу и стадиям полового созревания, позволил установить, что наиболее выраженные, чем в предпубертатном периоде, изменения характерны для подростков, находящихся на начальных стадиях полового созревания (II-III стадии). На этом этапе онтогенеза утрачивается характерная для детей 9-10 лет регионарная специфичность, появляются генерализованные реакции. У части подростков введение мобилизационной готовности вызывает парадоксальную реакцию - снижение выраженности ВП. Эти изменения связаны с существенным сдвигом гормонального профиля организма, повышением интенсивности обменных процессов, что приводит к повышению активации ЦНС в состоянии покоя и обусловливает снижение реактивности к внешним воздействиям.
На III этапе, начиная с 14-15 лет, у подростков, находящихся на IV-V стадиях полового созревания, отмечаются восстановление реактивности активационной системы, приближение характера ее функционирования к зрелому типу.
Выполнение произвольных движений у детей 6-7 лет характеризуется достаточно четкой и дифференцированной динамикой активационных процессов, охватывающих фронтальные, центральные и затылочные зоны мозга, при этом можно выделить левополушарную асимметрию с большей реактивностью лобных и центральных зон левой гемисферы, высокую реактивность затылочных отделов. Реализация движений в этом возрасте происходит на фоне достоверного снижения выраженности медленно-волновой и высокочастотной активности при сохранении стабильности низкочастотного б1-ритма. Лобно-центральный контур повышения межцентрального взаимодействия отмечен у 9-10-летних детей не только при выполнении движений, но и при подготовке к ним, что является отражением морфофункционального созревания коры. По мере формирования навыка к 9-10 годам более значимыми становятся корреляции параметров межполушарной когерентности ритмов ЭЭГ лобных зон коры в отдельных диапазонах частот и эффективности движений. При этом более низкие значения когерентности межполушарного взаимодействия лобных зон в и и б1-диапазоне связаны с менее эффективной деятельностью. Это свидетельствует о повышении роли межполушарной интеграции в обеспечении деятельности в сравнении с детьми младшей возрастной группы [Безруких М.М., 1994].
Рассмотрим рефлексы и двигательные навыки, которыми овладевает ребенок в различном возрасте.
В. Рефлексы и двигательные навыки детей грудного возраста. 1. Созревание ЦНС и мускулатуры в первые месяцы жизни ребенка быстро прогрессирует, что увеличивает его двигательную активность. В свою очередь увеличение движений стимулирует рост и развитие не только мускулатуры, но и ЦНС за счет усиленного притока афферентных импульсов, активирующих нейроны всех двигательных систем организма, в том числе и мотонейронов.
2. Кровоснабжение мозга достаточно интенсивное. Это объясняется богатством капиллярной сети, которая после рождения продолжает увеличиваться. Обильное кровоснабжение мозга обеспечивает потребность быстро растущей нервной ткани в кислороде. На серое вещество мозга приходится 3/4-4/5 всего объема кровоснабжения.
3. Мышечный тонус. Повышенный тонус мышц-сгибателей, сформированный в антенатальном периоде (ортоническая поза), в 1-й мес жизни ребенка еще сохраняется. Однако на 2-м мес постепенно усиливается тонус мышц-разгибателей, и к 3-5 мес жизни тонус мышц-сгибателей и мышц-разгибателей уравнивается. Это обусловлено сбалансированными возбуждающими и тормозными влияниями вышележащих отделов ЦНС на б-мотонейроны.
4. Рефлексы ребенка грудного возраста частично сочетают в себе рефлексы новорожденного, а также вновь формирующиеся рефлексы, к которым относятся следующие:
• туловищно-выпрямительный рефлекс - выпрямление головы при соприкосновении стоп ребенка с опорой; формируется с конца 1-го месяца;
•рефлекс Ландау верхний - ребенок в положении на животе поднимает голову и верхнюю часть туловища, опираясь на плоскость руками, и удерживается в этой позе; формируется со 2-4-го месяца (рис. 5.1, а);
•рефлекс Ландау нижний - в положении на животе ребенок разгибает и поднимает ноги; формируется к 5-6 мес.
5. Двигательные навыки. Весь период развития двигательной активности грудного ребенка можно разделить на следующие четко очерченные этапы.
Период от 2 до 5 мес жизни. С 2-месячного возраста начинается развитие движения руками в направлении к видимому предмету. Рука встречаясь с предметом, захватывает его. В возрасте 3 мес начинается освоение навыка ползания (см. рис. 5.1, а), в 4-5 мес развивается способность переворачиваться сначала со спины на живот, затем обратно.
Период от 5 до 9 мес. С 5-месячного возраста ребенок при поддержке начинает переступать. В 6-7 мес он садится, встает на четвереньки - готовится к принятию вертикального положения. В возрасте 7-8 мес малыш может вставать, стоять (см. рис. 5.1, в), придерживаясь руками за опору, свободно ползать. Ползание развивает и укрепляет мускулатуру, способствует развитию дальнейшей координации движений. Однако у ребенка грудного возраста довольно быстро (в пределах 1,5 ч) развивается утомление.
Период от 9 до 12 мес. В этом возрасте устанавливается четкая координация сократительной активности мышц верхних конечностей. К 10 мес движения рук становятся точными, целенаправленными. Ребенок может осуществлять хватательные движения вслепую. Дети в 11 мес пьют из чашки, удерживая ее обеими руками, делают попытки есть ложкой, ставят один предмет на другой, надевают кольца на стержень. В этот период ребенок делает первые попытки к самостоятельной ходьбе. К концу 1-го года жизни малыш при поддержке начинает ходить. Началом самостоятельной ходьбы считается день, когда ребенок без посторонней поддержки проходит несколько шагов.
Рис. 5.1. Этапы развития двигательных навыков у ребенка грудного возраста. а - 3 мес; б-6-7 мес; в - 7-8 мес; г -10 мес
В развитии нейрофизиологических механизмов произвольной моторной активности первостепенную роль играют процессы динамического становления связей между функционально различными зонами коры большого мозга, а также между корой большого мозга и ближайшими подкорковыми структурами.
Г. Двигательные навыки детей других возрастных периодов. В процессе развития организма наиболее заметные изменения происходят в критические периоды. К ним относятся 1-й мес жизни, 3 года, 7 лет и период 12-16 лет. Во все периоды жизни ребенка, особенно в критические, ЦНС весьма ранима. Недостаточное или несбалансированное питание приводит к уменьшению количества нейронов, причем это уменьшение впоследствии не компенсируется. Весьма чувствительна ЦНС ребенка к инфекциям, интоксикациям, травмам, негативные последствия от которых могут наблюдаться на протяжении всей жизни.
Основные этапы развития двигательных навыков ребенка после завершения периода развития в грудном возрасте. На 2-м году жизни у детей появляется способность к бегу, перешагиванию через предметы, самостоятельному подъему по лестнице.
На 3-м году жизни ребенок начинает подпрыгивать на месте, переступать через препятствия высотой 10-15 см, самостоятельно одеваться, застегивать пуговицы, завязывать шнурки. На данном этапе ведущим уровнем ЦНС, обеспечивающим интеграцию механизмов произвольной моторики, становится теменно-премоторный уровень.
В возрасте 3-5 лет появляется игровая деятельность, скачкообразно ускоряющая развитие высшей нервной деятельности. Ребенок начинает рисовать, может обучаться игре на музыкальных инструментах. В 4-5 лет ему становятся доступными сложные движения: бег, прыжки, катание на коньках, гимнастические, акробатические упражнения. Следует помнить, что и в этом возрасте ребенок быстро устает. Для профилактики утомления необходимо время от времени изменять вид занятий (активный отдых).
В возрасте 6-7 лет отмечаются еще низкое качество движений, низкая скорость и продолжительная пауза между отдельными движениями в серии, равная по продолжительности самому движению. По мере возрастного развития и совершенствования движений к 9-10 годам значимо увеличивается скорость движения и более чем в 5 раз сокращается пауза, что свидетельствует об изменении функции текущего контроля. Это связано со снижением неопределенности, более четким выбором моторной задачи, а также с более адекватным функциональным обеспечением деятельности. Однако сложившаяся к 9-10 годам функциональная структура организации движений обеспечивает выполнение не столько высоких по качеству, сколько стабильных и быстрых движений. Это определяется доминантной двигательной задачей, ориентированной на высокую скорость, которая в большей мере связана с внешними условиями и требованиями обучения и в меньшей - с функциональными возможностями ребенка [Безруких М.М., 1994].
Дальнейшее наращивание количества и качества моторной активности ребенка связано с завершением первичного становления нейронного субстрата в составе кинестетического анализатора, совершенствованием внутрикорковых, корково-подкорковых проводящих путей, функциональных связей между двигательными, ассоциативными областями коры большого мозга, а также подкорковыми структурами. Оптимальный режим работы двигательного аппарата у человека устанавливается к 20-25 годам жизни.
5.2. ФИЗИОЛОГИЯ СПИННОГО МОЗГА
5.2.1. Структурно-функциональная характеристика
А. Сегменты. Спинной мозг представляет собой тяж длиной около 45 см у мужчин и около 42 см у женщин, имеет сегментарное строение (31-33 сегмента); каждый его участок связан с определенной частью тела. Спинной мозг включает пять отделов:
шейный (CI-CVIII), грудной (ThI-ThXII), поясничный (LI-LV), крестцовый (SI-SV) и копчиковый (COI-СOIII).
В процессе эволюции сформировалось два утолщения - шейное (сегменты, иннервирующие верхние конечности) и пояснично-крестцовое (сегменты, иннервирующие нижние конечности) как результат повышенной нагрузки на эти отделы спинного мозга. У некоторых видов животных подобных утолщений нет, например у змеи, которая передвигается благодаря равномерному участию в процессе движения всей мускулатуры тела. Тренировка любого органа обеспечивает прогрессивное его развитие не только в фило-, но и в онтогенезе, при этом, естественно, совершенствуется и функция. Орган, не получающий достаточной нагрузки, постепенно атрофируется. Соматические нейроны в указанных утолщениях спинного мозга наиболее крупные, их больше, в каждом корешке этих сегментов содержится больше нервных волокон, нежели в других корешках, они отличаются наибольшей толщиной.
Б. Нейроны спинного мозга. Общее количество нейронов - около 13 млн. (3% мотонейронов, 97% вставочных нейронов, относящихся также к вегетативной нервной системе). Их целесообразно классифицировать по нескольким признакам:
• по отделу нервной системы - нейроны соматической и вегетативной нервной системы;
•по назначению, т.е. по направлению информации, - эфферентные, афферентные, вставочные;
• по влиянию - возбуждающие и тормозные.
Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются эффекторными, поскольку они иннервируют непосредственно рабочие органы - эффекторы (скелетные мышцы), их называют мотонейронами. Различают б- и г-мотонейроны. б-Мотонейроны иннервируют экстрафузальные мышечные волокна (скелетная мускулатура), их аксоны характеризуются высокой скоростью проведения возбуждения -70-1 20 м/с. б -Мотонейроны делят на две подгруппы: б1 - быстрые, иннервирующие белые мышечные волокна, их лабильность около 30 имп/с, и 02 - медленные, иннервирующие красные мышечные волокна, их лабильность составляет 10-15 имп/с. Низкая лабильность б -мотонейронов объясняется длительной следовой гиперполяризацией, сопровождающей ПД. На одном б -мотонейроне насчитывается до 20 000 синапсов: от кожных рецепторов, проприорецепторов и нисходящих путей вышележащих отделов ЦНС. г-Мотонейроны рассеяны среди б-мотонейронов, их активность регулируется нейронами вышележащих отделов ЦНС, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора). При изменении сократительной деятельности интрафузальных волокон под влиянием г-Мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует б-мотонейроны этой же мышцы и тормозит б -мотонейроны мышцы-антагониста, регулируя тем самым тонус скелетных мышц и двигательные реакции. Эти нейроны обладают высокой лабильностью -до 200 имп/с, но их аксонам свойственна более низкая скорость проведения возбуждения - 10-40 м/с.
Афферентные нейроны соматической нервной системы локализуются в спинальных ганглиях и ганглиях черепных нервов. Их отростки, проводящие афферентную импульсацию от мышечных, сухожильных и кожных рецепторов, вступают в соответствующие сегменты спинного мозга и образуют синаптические контакты либо непосредственно на б-мотонейронах (возбуждающие синапсы), либо на вставочных нейронах, которые могут быть возбуждающими и тормозными.
Вставочные (промежуточные) нейроны устанавливают связь с мотонейронами спинного мозга, с чувствительными нейронами.
Они также обеспечивают связь спинного мозга с ядрами ствола мозга, а через них - с корой большого мозга. Они могут быть как возбуждающими, так и тормозными, им присуща высокая лабильность - до 1000 имп/с.
Ассоциативные нейроны образуют собственный аппарат спинного мозга, устанавливающий связь между сегментами и внутри сегментов. Ассоциативный аппарат спинного мозга участвует в координации позы, тонуса мышц, движений конечностей и туловища.
Ретикулярная формация спинного мозга состоит из тонких перекладин серого вещества, пересекающихся в различных направлениях, ее нейроны имеют многочисленные отростки. Ретикулярная формация обнаруживается на уровне шейных сегментов между передними и задними рогами, а на уровне верхнегрудных сегментов - между боковыми и задними рогами в белом веществе, примыкающем к серому.
Нейроны вегетативной нервной системы являются также вставочными; нейроны симпатической нервной системы расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга (CVIII-LII) и являются фоново-активными, частота их разрядов - 3-5 имп/с. Нейроны парасимпатического отдела вегетативной нервной системы локализуются в сакральном отделе спинного мозга (82-84) и также фоново-активны.
В. Совокупность нейронов образует различные нервные центры. В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры. Различные центры симпатического отдела вегетативной нервной системы локализованы в таких сегментах, как центр зрачкового рефлекса – CVIII-TII, регуляции деятельности сердца - ThI-ThV, слюноотделения - ThII-ThIV, регуляции функции почек – ThV-LIII. Сегментарно расположены центры, регулирующие функции потовых желез и сосудов, гладких мышц внутренних органов, центры пиломоторных рефлексов. Парасимпатическую иннервацию получают из спинного мозга (SII-SIV) все органы малого таза: мочевой пузырь, часть толстой кишки ниже ее левого изгиба, половые органы. У мужчин парасимпатическая иннервация обеспечивает рефлекторный компонент эрекции, у женщин - сосудистые реакции клитора, влагалища.
Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (CI-CIV), диафрагмы (СIII-CV), верхних конечностей (CV-ThII), туловища (ThIII-LI) и нижних конечностей (LII-SV).
При повреждении определенных сегментов спинного мозга или его проводящих путей развиваются специфические двигательные нарушения и расстройства чувствительности.
Каждый сегмент спинного мозга участвует в чувствительной иннервации трех дерматомов. Имеется также дублирование двигательной иннервации скелетных мышц, что повышает надежность.
Г. Функции спинного мозга. Различают проводниковую и рефлекторную функции.
Проводниковая функция
Проводниковая функция осуществляется с помощью нисходящих и восходящих путей.
Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляется через передние корешки (закон Белла - Мажанди). Каждый корешок представляет собой множество нервных волокон. Например, дорсальный корешок кошки включает 12 тыс., а вентральный - 6 тыс. нервных волокон.
Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов: 1) от кожных рецепторов - болевых, температурных, прикосновения, давления, вибрации; 2) от проприорецепторов - мышечных (мышечных веретен), сухожильных (рецепторов Гольджи), надкостницы и оболочек суставов; 3) от рецепторов внутренних органов - висцерорецепторов (механо- и хеморецепторов разновидностью последних являются осморецепторы).
Медиатором первичных афферентных нейронов, локализующихся в спинальных ганглиях, является, по-видимому, субстанция Р.
Значение афферентной импулъсации, поступающей в спинной мозг, заключается в следующем:
· участие в координационной деятельности ЦНС по управлению скелетной мускулатурой. При выключении афферентной импульсации из рабочего органа управление им становится несовершенным;
· участие в процессах регуляции функций внутренних органов;
· поддержание тонуса ЦНС. При выключении афферентной импульсации наступает уменьшение суммарной тонической активности ЦНС, угнетение ее деятельности;
· афферентная импульсация несет информацию об изменениях окружающей среды.
Основные проводящие пути спинного мозга представлены в табл. 5.1.
Иерархия функций отделов мозга такова, что вышележащие его отделы управляют нижележащими, осуществляющими и собственные — более простые - реакции. Изучать их следует в восходящем ряду - от более простых к более сложным двигательным реакциям.
Таблица 5.1
Основные проводящие пути спинного мозга
Проводящие пути
Физиологическое значение
Восходящие (чувствительные) пути
Тонкий пучок (пучок Голля), проходит в задних столбах, импульсация поступает в кору
Осознаваемая импульсация от опорно-двигательного аппарата
Клиновидный пучок (пучок Бурдаха), проходит в задних столбах, импульсация поступает в кору
То же
Дорсальный спинно-мозжечковый (Флексига)
Импульсы от проприорецепторов мышц, сухожилий, связок; импульсация неосознаваемая
Передний спинно-мозжечковый (Говерса)
То же
Латеральный спинно-таламический
Болевая и температурная чувствительность
Передний спинно-таламический
Тактильная чувствительность, прикосновение. давление
Нисходящие (двигательные) пути
Латеральный кортико-спинальный (пирамидный)
Импульсы к скелетным мышцам, произвольные движения
Передний кортико-спинальный (пирамидный)
То же
Красноядерно-спинномозговой (Монакова), проходящий в боковых столбах
Импульсы, поддерживающие тонус скелетных мышц
Нисходящие (двигательные) пути
Ретикулоспинальный, проходящий в передних столбах
Импульсы, поддерживающие тонус скелетных мышц с помощью возбуждающих и тормозных влияний на б- и г-мотонейроны, а также регулирующие состояние спинальных вегетативных центров
Вестибулоспинальный, проходящий в передних столбах
Импульсы, обеспечивающие поддержание позы и равновесия тела
Тектоспинальный, проходящий в передних столбах
Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов (рефлексов четверохолмия)
5.2.3. Двигательные системы спинного мозга
Двигательные системы спинного мозга обеспечивают реализацию влияний центров головного мозга в управлении опорно-двигательным аппаратом, а также осуществляют собственные рефлексы и регуляцию мышечного тонуса туловища, шеи и конечностей. Если в качестве объединяющего стержня рефлексов конечностей принять характер ответной реакции, то все их можно объединить в четыре группы: 1) сгибательные, 2) разгибательные, 3) ритмические и 4) рефлексы позы.
А. Сгибательные рефлексы бывают фазными и тоническими. Фазные рефлексы - это однократное сгибание конечности при однократном раздражении кожи или проприорецепторов. Одновременно с возбуждением мотонейронов мышц-сгибателей происходит реципрокное торможение мотонейронов мышц-разгибателей. Рефлексы, возникающие с рецепторов кожи, являются полисинаптическими, они имеют защитное значение (рис. 5.2). Например, погружение в слабый раствор серной кислоты лапки спинальной лягушки (лягушка, у которой удален головной мозг), подвешенной на крючке, или щипок кожи конечности пинцетом вызывает отдергивание конечности вследствие сгибания ее в коленном суставе, а при более сильном раздражении - и в тазобедренном суставе.
Рис. 5.2. Рефлексы нижних конечностей.
А - дуга сгибательного (защитного) рефлекса; Б - дута перекрестного разгибательного рефлекса; В - коленные суставы с мышцами; Г - сегмент спинного мозга; 1 - раздражение кожных рецепторов; 2 - афферентный путь ( ^);
3 - эфферентные пути (v) от б-мотонейронов центров сгибания (С) и разгибания (Р). Вставочные нейроны: О——< тормозные, О——< возбуждающие
Рефлексы, возникающие с проприорецепторов, могут быть моносинаптическими и полисинаптическими, например шейные позотонические (постуральные) рефлексы. Фазные рефлексы с проприорецепторов участвуют в формировании акта ходьбы. По степени выраженности фазных сгибательных и разгибательных рефлексов определяют состояние возбудимости ЦНС и возможные ее нарушения. Тонические сгибательные (как и разгибательные) рефлексы возникают при длительном растяжении мышц, их главное назначение - поддержание позы. Тоническое сокращение скелетных мышц является фоновым для всех двигательных актов, осуществляемых с помощью фазических сокращений мышц.
Выделяют несколько сгибательных фазных рефлексов: локтевой и ахиллов - проприоцептивные рефлексы, подошвенный - кожный рефлекс. Локтевой рефлекс выражается в сгибании руки в локтевом суставе при ударе молоточком по сухожилию двуглавой мышцы плеча (m. biceps brachii) (при вызове рефлекса рука должна быть слегка согнута в локтевом суставе), его дуга замыкается в шейных сегментах спинного мозга CV-CVI. Ахиллов рефлекс выражается в подошвенном сгибании стопы в результате сокращения трехглавой мышцы голени при ударе молоточком по ахиллову сухожилию, рефлекторная дуга замыкается на уровне крестцовых сегментов SI-SII, Подошвенный рефлекс - сгибание стопы и пальцев при штриховом раздражении подошвы, дуга рефлекса замыкается также на уровне SI-SII.
Б. Разгибательные рефлексы, как и сгибательные, бывают фазными и тоническими, возникают с проприорецепторов мышц-разгибателей, являются моносинаптическими. Фазные рефлексы возникают в ответ на однократное раздражение мышечных рецепторов, например при ударе по сухожилию четырехглавой мышцы ниже надколенной чашечки. При этом возникает коленный разгибательный рефлекс вследствие сокращения четырехглавой мышцы: мотонейроны мышц-сгибателей во время разгибательного рефлекса тормозятся - это постсинаптическое реципрокное торможение с помощью вставочных тормозных клеток Реншоу (рис. 5.3). Рефлекторная дуга коленного рефлекса замыкается в поясничных сегментах LII -LIV. Фазные разгибательные рефлексы, как и сгибательные, участвуют в формировании акта ходьбы.
Тонические разгибательные рефлексы представляют собой длительное сокращение мышц-разгибателей при длительном растяжении их сухожилий. Их роль - поддержание позы. В положении стоя тоническое сокращение мышц-разгибателей предотвращает сгибание нижних конечностей и сохраняет вертикальную естественную позу. Тоническое сокращение мышц спины удерживает туловище в вертикальном положении, обеспечивая осанку человека. Тонические рефлексы в ответ на растяжение мышц (сгибателей и разгибателей) называют также миотатическими.
В. Рефлексы позы - перераспределение мышечного тонуса, возникающее при изменении положения тела или отдельных его частей. Рефлексы позы осуществляются с участием различных отделов ЦНС. На уровне спинного мозга замыкаются шейные позные рефлексы, наличие которых установил голландский физиолог Р.Магнус (1924) в специальных опытах на кошке. Существуют две разновидности этих рефлексов - возникающие при наклоне и при поворотах головы.
При наклоне головы вниз (кпереди) увеличивается тонус мышц -сгибателей передних конечностей и тонус мышц - разгибателей задних конечностей, в результате чего передние конечности сгибаются, а задние разгибаются. При наклоне головы вверх (кзади) появляются противоположные реакции - передние конечности разгибаются вследствие увеличения тонуса их мышц-разгибателей, а задние - сгибаются вследствие повышения тонуса их мышц-сгибателей. Эти рефлексы возникают с проприорецепторов мышц шеи и фасций, покрывающих шейный отдел позвоночника. В условиях естественного поведения они увеличивают шансы достать пищу, находящуюся выше или ниже головы животного (рис. 5.4).
Вторая группа шейных позных рефлексов возникает с тех же рецепторов, но только при поворотах или наклонах головы вправо или влево. При этом повышается тонус мышц – разгибателей обеих конечностей на стороне, куда повернута голова, и повышается тонус мышц-сгибателей на противоположной стороне. Рефлекс направлен на сохранение позы, которая может быть нарушена вследствие изменения положения центра тяжести после поворота головы. Центр тяжести смещается в сторону поворота головы - именно на этой стороне повышается тонус мышц - разгибателей обеих конечностей (рис. 5.5).
Рис. 5.4. Позные шейные рефлексы у кошки с удаленным вестибулярным аппаратом.
a- до изменения положения головы; б- при пассивных поднимании (^) и опускании (v) головы
Рис. 5.5. Изменение тонуса мышц конечностей при наклоне головы вправо (а) и влево (б)
Г. Ритмические рефлексы - многократное повторное сгибание и разгибание конечностей. Примерами могут быть рефлексы потирания у лягушки, чесательный и шагательный рефлексы у собаки. Рефлекс потирания заключается в том, что после смазывания кожи бедра раствором серной кислоты спинальная лягушка многократно потирает этот участок - пытается освободиться от раздражителя. Слабое раздражение кожи боковой поверхности тела у собаки вызывает почесывание этого участка задней конечностью - чесателъный рефлекс (аналог рефлекса потирания у лягушки). Шагательный рефлекс наблюдают у спинальной собаки, подвешенной с помощью лямок в станке.
5.2.4. Механизм шагательного рефлекса
А. Рефлекс возникает при однократном раздражении кожи конечности. Он выражается в сгибании этой конечности с одновременным дополнительным разгибанием противоположной задней конечности - перекрестный разгибательный рефлекс (см. рис. 5.2, Б). Затем согнутая конечность разгибается, опускается вниз, разогнутая - сгибается и поднимается вверх и т. д. Конечности не касаются опоры (собака фиксирована в станке с помощью лямок) и без дополнительного раздражения продолжают ритмично поочередно сгибаться и разгибаться - «шагать» в воздухе. Рефлекс может продолжаться часами, так как устранено влияние коры большого мозга. При неповрежденных сегментах, иннервирующих передние конечности (Cv-ThII), и более длительном раздражении задней конечности в рефлекс вовлекаются передние конечности. Это наблюдение свидетельствует о межсегментарной связи на уровне спинного мозга, играющей важную роль в ритмических движениях конечностей. Поочередное сокращение и расслабление мышц - сгибателей и разгибателей осуществляются в результате взаимодействия процессов возбуждения и торможения в соответствующих центрах спинного мозга под влиянием импульсов, поступающих в мозг от проприорецепторов.
Б. Особая роль проприорецепторов в осуществлении шагательного рефлекса определяется их расположением. Мышечные веретена (мышечные рецепторы) расположены параллельно скелетной мышце - своими концами они крепятся к соединительнотканной оболочке (перимизий) пучка экстрафузальных (fusus - веретено) мышечных волокон при помощи напоминающих сухожилия полосок соединительной ткани длиной 0,5-1,0 мм (рис. 5.6). Поэтому, когда мышца расслабляется (удлиняется), растягиваются и мышечные рецепторы, что и ведет к их возбуждению (см. рис. 5.6, а).
Мышечный рецептор состоит из нескольких поперечнополосатых интрафузальных мышечных волокон, окруженных соединительнотканной капсулой. Длина волокон равна 4-7 мм, толщина составляет 15-30 мкм.
Длина экстрафузальных мышечных волокон - от нескольких миллиметров до многих сантиметров, толщина составляет 50-100 мкм. Вокруг средней части мышечного веретена несколько раз обвивается окончание одного афферентного волокна. Многие мышечные веретена иннервируются и другим - более тонким - афферентным волокном, которое обвивает в виде спирали периферические участки мышечного рецептора. Импульсы от мышечных рецепторов возбуждают нейроны своего центра (гомонимные нейроны) и тормозят нейроны центра-антагониста. Ближе к концам мышечного веретена подходят двигательные нервные окончания, являющиеся аксонами г-мотонейронов спинного мозга. Их импульсация вызывает сокращение интрафузальных мышечных волокон (мышечных волокон рецептора), что ведет к возбуждению рецепторов.
Рис. 5.6. Схема, отражающая процессы возбуждения б-мотонейронов спинного мозга и их торможения с помощью вставочных тормозных нейронов во время сокращения и расслабления скелетной мышцы. 1 - мышечные рецепторы (мышечные веретена); 2 - сухожилия мышцы и рецепторы (рецепторы Гольджи); 3 - полусегмент спинного мозга; а - мышца растянута и расслаблена - возбуждаются мышечные рецепторы (1); б - мышца сокращена, напряжена и укорочена - возбуждаются сухожильные рецепторы (2);
сплошные линии - импульсация выражена; пунктирные линии - импульсация отсутствует
Сухожильные рецепторы (рецепторы Гольджи) заключены в соединительнотканную капсулу и локализуются в сухожилиях скелетных мышц вблизи сухожильно-мышечного соединения. Рецепторы представляют собой безмиелиновые окончания толстого миелинового афферентного волокна (подойдя к капсуле рецепторов Гольджи, это волокно теряет миелиновую оболочку и делится на несколько окончаний). Сухожильные рецепторы крепятся к скелетной мышце последовательно, что обеспечивает их раздражение при натяжении сухожилия (см. рис. 5.6, б). Поэтому сухожильные рецепторы посылают в мозг информацию о том, что мышца сокращена (напряжено и сухожилие), а мышечные рецепторы - о том, что мышца расслаблена и удлинена. Импульсы от сухожильных рецепторов тормозят нейроны своего центра и возбуждают нейроны центра-антагониста (у мышц-сгибателей это возбуждение выражено слабее).
В. Элемент шагательного рефлекса - поочередное сокращение и расслабление скелетной мышцы под влиянием импульсов от проприорецепторов, поступающих в свой центр.
Когда мышца (сгибатель или разгибатель) расслаблена и удлинена, возбуждаются мышечные веретена, импульсы от которых поступают к своим б-мотонейронам спинного мозга и возбуждают их (рис. 5.6, а). Далее б-мотонейроны посылают импульсы к этой же скелетной мышце, вызывая ее сокращение. Как только мышца сократилась (рис. 5.6, б), возбуждение мышечных веретен прекращается или сильно ослабляется (они уже не растянуты), но начинают возбуждаться сухожильные рецепторы. Импульсы от рецепторов также поступают в первую очередь в свой центр спинного мозга, но к тормозным клеткам Реншоу. Возбуждение тормозных клеток вызывает торможение б-мотонейронов этой же скелетной мышцы, вследствие чего она расслабляется. Однако ее расслабление (удлинение) снова ведет к возбуждению мышечных веретен и б-мотонейронов - мышца вновь сокращается. Вследствие ее сокращения возбуждаются сухожильные рецепторы и тормозные клетки в спинном мозге, что вновь ведет к расслаблению скелетной мышцы и т.д. Мышца поочередно сокращается и расслабляется в результате поступления к ее мотонейронам импульсов от собственных рецепторов. Описанные процессы в равной степени относятся и к мышце-сгибателю, и к мышце-разгибателю. При этом расслабление скелетной мышцы запускает механизмы ее сокращения, а сокращение скелетной мышцы активирует механизмы, расслабляющие мышцу.
Рис. 5.7. Рефлекторные дуги шагательного рефлекса. А - конечность согнута; Б - контралатеральная конечность разогнута;
В - коленные суставы с мышцами; Г - полусегменты спинного мозга;
1 - сухожилия и их рецепторы (рецепторы Гольджи); 2 - мышечные рецепторы (мышечные веретена); ^ афферентные пути от проприорецепторов;
vэфферентные пути от центров сгибания (С) и разгибания (Р);
О—< тормозные вставочные нейроны
Для обеспечения поочередного сгибания и разгибания конечностей при шагательном рефлексе мышцы-сгибатели и мыщцы-разгибатели должны сокращаться и расслабляться последовательно друг за другом. На одноименной стороне при возбуждении центра мышцы-сгибателя тормозится центр мышцы-разгибателя. Если на одной ноге сокращены сгибатели (рис. 5.7, А), на другой ноге должны сокращаться разгибатели (рис. 5.7, Б), что обеспечивается поступлением афферентных импульсов от мышечных и сухожильных рецепторов и поочередным возбуждением и торможением центров сгибателей и разгибателей.
5.2.5. Регуляция тонуса мышц
Тонус исследуют после поперечной перерезки спинного мозга. Сразу после перерезки в эксперименте или после травматического повреждения его у человека наблюдаются мышечная атония и отсутствие рефлексов (спинальный шок). Главная причина спинального шока - выключение влияния на спинной мозг вышележащих отделов ЦНС (повторная перерезка спинного мозга ниже первой после исчезновения шока повторно шок не вызывает). Спинальный шок у лягушек длится несколько минут, у собак - несколько дней, у человека - около 2 мес. После исчезновения спинального шока тонус мышц, иннервируемых посредством сегментов спинного мозга, которые находятся ниже перерезки (повреждения), резко повышается. Сгибательные и разгибательные рефлексы нижних конечностей у человека в случае повреждения спинного мозга усиливаются. Механизм повышения тонуса мышц нижних конечностей в случае повреждения спинного мозга (после окончания спинального шока) отражает рис. 5.8.
Гипертонус имеет рефлекторную природу - он развивается вследствие афферентной импульсации от мышечных рецепторов. Деафферентация, например, нижней конечности у лягушки ведет к исчезновению тонуса у нее (опыт Бронжеста).
Афферентную импульсацию от мышечных рецепторов по задним корешкам спинного мозга, которая ведет к возбуждению б-мотонейронов спинного мозга и сокращению скелетных мышц, обеспечивают три фактора:
• растяжение и возбуждение мышечных рецепторов под влиянием сил гравитации конечности;
• спонтанная активность мышечных рецепторов;
• спонтанная активность г-мотонейронов, которая реализуется следующим образом. Возбуждение г-мотонейронов вызывает возбуждение и сокращение иннервируемых ими интрафузальных мышечных волокон, в результате чего увеличивается натяжение мышечного рецептора, поскольку концы его зафиксированы на скелетной мышце. Вследствие натяжения мышечного веретена раздражаются и возбуждаются его афферентные окончания (проприорецепторы), импульсы от которых поступают к б-мотонейронам, возбуждая их. В свою очередь б-мотонейроны посылают импульсы к скелетной мышце и вызывают ее постоянное (тоническое) сокращение.
Мы рассмотрели рефлекторную и проводниковую функции изолированного спинного мозга. В нормальных условиях деятельность спинного мозга контролируется вышележащими отделами ЦНС посредством импульсации ко всем его нервным элементам.