Значение К для вычисления квадратичного отклонения( δ ) по амплитуде
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | - | - | 1,13 | 1,69 | 2,06 | 2,33 | 2,53 | 2,70 | 2,85 | 2,97 |
1 | 3,08 | 3,17 | 3,26 | 3,34 | 3,41 | 3,47 | 3,53 | 3,59 | 3,64 | 3,69 |
2 | 3,73 | 3,78 | 3,82 | 3,86 | 3,90 | 3,93 | 3,96 | 4,00 | 4,03 | 4,06 |
3 | 4,09 | 4,11 | 4,14 | 4,16 | 4,19 | 4,21 | 4,24 | 4,26 | 4,28 | 4,30 |
4 | 4,32 | 4,34 | 4,36 | 4,38 | 4,40 | 4,42 | 4,43 | 4,45 | 4,47 | 4,48 |
5 | 4,50 | 4,51 | 4,53 | 4,54 | 4,56 | 4,57 | 4,59 | 4,60 | 4,61 | 4,63 |
6 | 4,64 | 4,65 | 4,66 | 4,68 | 4,69 | 4,70 | 4,71 | 4,72 | 4,73 | 4,74 |
7 | 4,75 | 4,77 | 4,78 | 4,79 | 4,80 | 4,81 | 4,82 | 4,83 | 4,83 | 4,84 |
8 | 4,85 | 4,86 | 4,87 | 4,88 | 4,89 | 4,90 | 4,91 | 4,91 | 4,92 | 4,93 |
9 | 4,94 | 4,95 | 4,96 | 4,96 | 4,97 | 4,98 | 4,99 | 4,99 | 5,00 | 5,01 |
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | |
5,02 | 5,49 | 5,76 | 5,94 | 6,07 | 6,18 | 6,28 | 6,35 | 6,42 | 6,48 |
Для нашего примера среднее квадратичное отклонение упрощенным методом: δ =±130-116 =±2,9 см
4,79
ЗНАЧЕНИЕ СРЕДНЕГО КВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ
1. С помощью среднего квадратического отклонения проводится оценка колеблемости вариационного ряда. В симметричном вариационном ряду в пределах значения одной сигмы от величины средней арифметической, т.е. М ± 1 δ находится 68,3% вариант от их общего числа.
В пределах двух сигм (М ± 2 δ) находится 95,5% вариант, в интервале трех сигм (М ± 3 δ) уже 99,7% вариант вариационного ряда. Таким образом, при нормальном распределении практически весь вариационный ряд укладывается в интервале ±3 δ от значения средней арифметической. Последнее известно как «правило трех сигм».
2. Среднее квадратическое отклонение применяется для оценки физического развития. Индивиды со значениями признака в пределах М±1 δ оцениваются как имеющие нормальное развитие, а этот интервал считают нормой. Индивиды со значением по признаку в пределах от +1 δ до +2 δ или от -1 δ до -2 δ оцениваются как имеющие развитие выше или ниже нормального, т.е. как субнорма. Если варианта находится в пределах от +2 δ до +3 δ или от - 2 δ до - 3 δ, то такой индивид расценивается как высокий или низкий (субаномалия).
3. Среднее квадратическое отклонение используется для оценки изменчивости нескольких вариационных рядов. В тех случаях, когда сравниваются ряды, имеющие одну и ту же систему измерений, (например, характеризуется только рост или масса тела) можно сделать выводы непосредственно по величине среднего квадратического отклонения. Однако при характеристике неоднородных рядов, когда значения одних представлены в метрах, других в килограммах, следует использовать коэффициент вариации:
В практике приняты следующие критерии оценки коэффициента вариации:
· Низкий - если его величина не превышает 10,0%;
· Средний - если его величина колеблется в пределах от 10,0% до 20,0%;
· Высокий - если его величина больше 20,0%.
4. Среднее квадратическое отклонение применяется для оценки достоверности средних величин, о чем будет сказано ниже.