1 Матрицы. Действия с матрицами
Матрица - множество чисел, образующих прямоугольную таблицу, которая содержит m-строк и n-столбцов. Для обозначения матрицы используется надпись:
aij, I - номер строки, j - номер столбца.
Элементы матрицы, стоящие на диагонали, идущие из верхнего левого угла называют главной диагональю, другую диагональ называют побочной.
Если количество строк m матрицы не равно количеству столбцов n, то матрица называется прямоугольной
Если количество столбцов матрицы совпадают с количеством строк, то матрица называется квадратной
Количество строк или столбцов в квадратной матрице называются ее порядкомЕсли все элементы квадратной матрицы, кроме элементов главной диагонали, равны нулю, то матрица называется диагональной
Если все числа главной диагонали равны единице, то матрица называется единичной
Свойства матриц:
§ A + (B + C) = (A + B) + C
§ A + B = B + A
§ A(BC) = (AB) C
§ A (B + C) = AB + AC
§ (B + C) A = BA + CA
§ (AT) T = A
(A * B) T = BT * AT
1. Сложение матриц
Матрицы одинакового размера можно складывать.
Суммой двух таких матриц А и В называется матрица С, элементы которой равны сумме соответствующих элементов матриц А и В. Символически будем записывать так: А+В=С.
Пример.
1. Вычитание матриц.
Разностью двух матриц А и В одинакового размера называется матрица С, такая, что
С+В=А
Из этого определения следует, что элементы матрицы С равны разности соответствующих элементов матриц А и В.
Обозначается разность матриц А и В так: С=А – В.
Пример.
Умножение матриц
Рассмотрим правило умножения двух квадратных матриц второго порядка.
Произведением матрицы А на матрицу В называется матрица С=АВ.
Правила умножения прямоугольных матриц:
- Умножение матрицы А на матрицу В имеет смысл в том случае, когда число столбцов матрицы А совпадает с числом строк в матрице В.
В результате умножения двух прямоугольных матриц получается матрица, содержащая столько строк, сколько строк было в первой матрице и столько столбцов, сколько столбцов было во второй матрице.
Умножение матрицы на число
При умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на число a. Например, умножим матрицу на число 2. Получим
т.е. при умножении матрицы на число множитель «вносится» под знак матрицы.
5. Транспонирование матрицы
Транспонированная матрица – матрица AТ, полученная из исходной матрицы A заменой строк на столбцы.
Формально, транспонированная матрица для матрицы A размеров m*n – матрица AT размеров n*m, определённая как AT[i, j] = A [j, i].
Например,
Свойства транспонированных матриц
1. (AT)T = A
2. (A + B)T = AT + BT
3. (AB)T = BTAT
4. detA = detAT